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SYLLABUS: ALGEBRAIC STRUCTURES

Objectives:

The objective of this course is to introduce the concepts and to develop working
knowledge on class equation, solvability of groups, finite abelian groups, linear trans-
formations, real quadratic forms.

UNIT I: Sylow’s theorems Counting Principle - Class equation for finite groups
and its applications - Sylow’s theorems (For theorem 2.12.1, First proof only).

UNIT II: Finite abelian groups and Modules Solvable groups - Direct products -
Finite abelian groups- Modules.

UNIT III: Triangular form Linear Transformations: Canonical forms –Triangular
form - Nilpotent transformations.

UNIT IV: The Rational and Jordan forms Jordan form - Rational canonical form.

UNIT V: Hermitian, unitary, normal transformations Trace and transpose - Her-
mitian, unitary, normal transformations, real quadratic form.
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Unit 1

Sylow’s theorems

Objectives

After reading this unit, learners will be able to

1. recall the fundamental concepts of the group

2. understand the concepts of conjugacy classes

3. write the class equation for finite groups

4. understand three parts of Sylow’s theorems and its applications

1.1 Basics of Group

Definition 1.1.1. A group is an ordered pair (G, ∗), where G is a nonempty set and ∗ is

a binary operation on G such that the following properties hold:

(G1) For all a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c (associative law).

(G2) There exists e ∈ G such that for all a ∈ G, a ∗ e = a = e ∗ a (existence of an

identity).

(G3) For all a ∈ G, there exists a′ ∈ G such that a ∗ a′ = e = a′ ∗ a (existence of an

inverse).

Definition 1.1.2. A group G is said to be abelian if ab = ba for all a, b ∈ G. A group

which is not abelian is called a non-abelian group.

Example 1.1.3.

1. Let G = {e} and e ∗ e = e. Obviously G is a trivial group.
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2. Z,Q,R and C are groups under usual addition.

3. The set of all 2 × 2 matrices
(
a b
c d

)
where a, b, c, d ∈ R is a group under matrix

addition.
(

0 0
0 0

)
is the identity element and

(
−a −b
−c −d

)
is the inverse of

(
a b
c d

)
.

4. The set of all 2 × 2 non-singular matrices
(
a b
c d

)
where a, b, c, d ∈ R is a group

under matrix multiplication.
(

1 0
0 1

)
is the identity element. The inverse of

(
a b
c d

)
is 1
|A|

(
a b
c d

)
where |A| = ad− bc 6= 0.

5. N is not a group under usual addition since there is no element e ∈ N such that x+e = x.

6. The set E of all even integers under usual addition is a group.

7. Q∗ and R∗ under usual multiplication are groups. 1 is the identity element and the

inverse of a non-zero element a is 1/a.

8. Q+ is a group under usual multiplication. For a, b ∈ Q+ ⇒ ab ∈ Q+. Therefore usual

multiplication is a binary operation in Q+.

1 ∈ Q+ is the identity element. If a ∈ Q+, (1/a) ∈ Q+ is the inverse of a.

9. Z under the usual multiplication is not a group.

10. G = {1, i,−1,−i}. G is a group under usual multiplication. The identity element is

1. The inverse of 1, i,−1 and −i are 1,−i,−1 and i respectively.

The Cayley table for this group is given by

* 1 i -1 -i
1 1 i -1 i
i i -1 -i 1

-1 -1 -i 1 i
-i -i 1 i -1

11. Let G =

{(
1 0
0 1

)
,

(
−1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 −1

)}
G is a group under matrix multiplication. [Construct the Cayley table for this group]

12. C∗ is a group under usual multiplication given by (a+ib)(c+id) = (ac−bd)+i(ad+bc).

13. Let G = {z : z ∈ C and |z| = 1}. Then G is a under usual multiplication.

14. The set of all nth roots of unity with usual multiplication is a group.

15. Let G = {a+ b
√

2 : a, b ∈ Z}. Then G is a group under addition.
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Definition 1.1.4. Let Zn = {0, 1, 2, . . . , n− 1}. Let a, b ∈ Zn. Then a+ b = qn+ r where

0 ≤ r < n. We define a⊕b = r. Let ab = q′n+s where 0 ≤ s < n. We define a�b = s. The

binary operations ⊕ and � are called addition modulo n and multiplication modulo n

respectively. Then (Zn,⊕) is an abelian group.

Let n be a prime. Then Zn − {0} is a group under multiplication modulo n.

Elementary properties of group

Theorem 1.1.5. Let G be a group. Then

(i) There exists a unique identity element e ∈ G such that e ∗ a = a = a ∗ e for all a ∈ G.

(ii) For all a ∈ G, there exists a unique inverse a′ ∈ G such that a ∗ a′ = e = a′ ∗ a.

We denote the inverse of a by a−1.

Theorem 1.1.6. In a group, the left and right cancellation laws hold (i.e,) ab = ac ⇒

b = c and ba = ca⇒ b = c.

Theorem 1.1.7. Let G be a group and a, b ∈ G. Then the equation ax = b and ya = b

have unique solutions for x and y in G.

Theorem 1.1.8. Let G be a group. Let a, b ∈ G. Then (ab)−1 = b−1a−1 and (a−1)−1 = a.

Corollary 1.1.9. If a1, a2, . . . , an ∈ G then (a1a2 · · · an)−1 = a−1n a−1n−1 · · · a−11 .

Definition 1.1.10. Let G be a group and a ∈ G. For any positive integer n, we define

an = aa · · · a(a written n times). Clearly (an)−1 = (aa · · · a)−1 = (a−1a−1 · · · a−1) =

(an)−1. Now we define a−n = (a−1)n = (an)−1. Finally we define a0 = e. Thus an is

defined for all integers n.

When the binary operation on G is "+", we denote a+a+ · · ·+a (a written n times)

as na.

Theorem 1.1.11. Let G be a group and a ∈ G. Then

(i) aman = am+n, m, n ∈ Z.

(ii) (am)n = amn, m, n ∈ Z.
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Permutation Groups

Definition 1.1.12. LetA be a finite set. A bijection fromA to itself is called a permutation

of A.

For example, if A = {1, 2, 3, 4} f : A→ A given by f(1) = 2, f(2) = 1, f(3) = 4 and

f(4) = 3 is a permutation of A. We shall write this permutation as
(

1 2 3 4
2 1 4 3

)
. An

element in the bottom row is the image of the element just above it in the upper row.

Definition 1.1.13. Let A be a finite set containing n elements. The set of all permutations

of A is clearly a group under the composition of functions. This group is called the

symmetric group of degree n and is denoted by Sn.

Example 1.1.14. Let A = {1, 2, 3}. Then S3 consists of e =

(
1 2 3
1 2 3

)
;

p1 =

(
1 2 3
2 3 1

)
; p2 =

(
1 2 3
3 1 2

)
; p3 =

(
1 2 3
1 3 2

)
; p4 =

(
1 2 3
3 2 1

)
;

p5 =

(
1 2 3
2 1 3

)
. In this group, e is the identity element. We now compute the product

p1p2.

1 2 3
p1 : ↓ ↓ ↓

2 3 1
p2 : ↓ ↓ ↓

1 2 3

Hence p1p2 :
1 2 3
↓ ↓ ↓
1 2 3

So that p1p2 = e. Now, p1p4 =

(
1 2 3
2 3 1

)(
1 2 3
3 2 1

)
=

(
1 2 3
2 1 3

)
= p5.

Similarly we can compute all other products and Cayley table for this group is given by

e p1 p2 p3 p4 p5
e e p1 p2 p3 p4 p5
p1 p1 p2 e p4 p5 p3
p2 p2 e p1 p5 p3 p4
p3 p3 p5 p4 e p2 p1
p4 p4 p3 p5 p1 e p2
p5 p5 p4 p3 p2 p1 e

Thus S3 is a group containing 3! = 6 elements.

In S3, p1p2 = p2p1 = e so that the inverse of p1 is p2. In general the inverse of a

permutation can be obtained by interchanging the rows of the permutation.
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For example, if p =

(
1 2 3 4 5
3 4 2 5 1

)
then the inverse of p is the permutation

given by p−1 =

(
3 4 2 5 1
1 2 3 4 5

)
=

(
1 2 3 4 5
5 3 1 2 4

)
.

In S3, p1p4 = p5 and p4p1 = p3. Hence p1p4 6= p4p1 so that S3 is non-abelian.

The symmetric group Sn containing n! elements, for, let A = {1, 2, . . . , n}. Any

permutation on A is given by specifying the image of each element.

The image of 1 can be chosen in n different ways.

Since the image of two is different from the image of 1, it can be chosen in (n − 1)

different ways and so on.

Hence the number of permutations of A is n(n− 1) · · · 2 · 1 = n! so that the number of

elements in Sn is n!.

Definition 1.1.15. Let G be a finite group. Then the number of elements in G is called

the order of G and is denoted by |G| or o(G).

Definition 1.1.16. Let p be a permutation on A = {1, 2, . . . , n}. p is called a cycle

of length r if there exist distinct symbols a1, a2, . . . , ar such that p(a1) = a2, p(a2) =

a3, . . . , p(ar−1) = ar, and p(ar) = a1, and p(b) = b for all b ∈ A − {a1, a2, . . . , ar}. This

cycle is represented by the symbol (a1, a2, · · · , ar).

Thus under the cycle (a1, a2, · · · , ar) each symbol is mapped onto the following symbol

except the last one which is mapped onto the first symbol and all the other symbols not in

the cycle are fixed.

Example 1.1.17. Let A = {1, 2, 3, 4, 5}. Consider the cycle of length 4 given by p =

(2451). Then p =

(
1 2 3 4 5
2 4 3 5 1

)
and so (2451) = (4521) = (5124) = (1245).

Remark 1.1.18. Since cycles are special types of permutations, they can be multiplied in

the usual way. The product of cycles need not be a cycle.

For example, let p1 = (234) and p2 = (1, 5). Then

p1p2 =

(
1 2 3 4 5
1 3 4 2 5

)(
1 2 3 4 5
5 2 3 4 1

)
=

(
1 2 3 4 5
5 3 4 2 1

)
which is not a

cycle.

Definition 1.1.19. Two cycles are said to be disjoint if they have any no symbols in

common.
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For example (2 1 5) and (3 4) are disjoint cycles.

Theorem 1.1.20. Let An be the set of all even permutations in Sn. Then An is a group

containing
n!

2
permutations.

Definition 1.1.21. The group An of all even permutations in Sn is called the alternating

group on n symbols.

Subgroups

Definition 1.1.22. Let G be a set with binary operation ∗ defined on it. Let S ⊆ G. If for

each a, b ∈ S, a ∗ b is in S, we say that S is closed with respect to the binary operation ∗.

Example 1.1.23. (i) (Z,+) is a group. The set E of all even integers is closed under +

and further (E,+) is itself a group.

(ii) The set of G of all non-singular 2× 2 matrices form a group under matrix multi-

plication. Let H be the set of all matrices of the form
(
cos θ −sin θ
sin θ cos θ

)
.

Then H is subset of G and H itself a group under matrix multiplication.

Definition 1.1.24. A subset H of group G is called subgroup of G if H forms a group

with respect to the binary operation in G.

Example 1.1.25. (i) Let G be any group. Then {e} and G are trivial subgroups of G.

They are called improper subgroups of G.

(ii) (Q,+) is a subgroup of (R,+) and (R,+) is a subgroup of (C,+).

(iii) In (Z8,⊕), let H1 = {0, 4} and H2 = {0, 2, 4, 6}. The Cayley tables for H1 and H2

are given by

⊕ 0 4
0 0 4
4 4 0

⊕ 0 2 4 6
0 0 2 4 6
2 2 4 6 0
4 4 6 0 2
6 6 0 2 4

It is easily seen that H1 and H2 are closed under ⊕ and (H1,⊕) and (H2,⊕) are

groups. Hence H1 and H2 are subgroups of Z8.

(iv) {1,−1} is a subgroup of (R∗, ·).

(v) {1, i,−1,−i} is a subgroup of (C∗, ·).
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(vi) For any integer n we define nZ = {nx : x ∈ Z}.

Then (nZ,+) is a subgroup of (Z,+).

For, let a, b ∈ nZ. Then a = nx and b = ny where x, y ∈ Z.

Hence a+ b = n(x+ y) ∈ nZ and so nZ is closed under +.

Clearly 0 ∈ nZ is the identity element. Inverse of nx is −nx = n(−x) ∈ nZ. Hence

(nZ,+) is a group.

(vii) In the symmetric group S3, H1 = {e, p1, p2};H2 = {e, p3};H3 = {e, p4}; and H4 =

{e, p5} are subgroups.

(viii) An is a subgroup of Sn.

In all the above examples we see that the identity element in the subgroup is the

same as the identity element of the group.

Theorem 1.1.26. Let H be a subgroup of G. Then

(a) the identity element of H is the same as that of G.

(b) for each a ∈ H the inverse of a in H is the same as the inverse of a in G.

Theorem 1.1.27. A subset H of a group G is a subgroup of G if and only if

(i) it is closed under the binary operation in G.

(ii) The identity e of G is in H. (iii) a ∈ H ⇒ a−1 ∈ H.

Theorem 1.1.28. A non-empty subset H of a group G is a subgroup of G if and only if

a, b ∈ H ⇒ ab−1 ∈ H.

If the operation is + then H is a subgroup of G if and only if a, b ∈ H ⇒ a− b ∈ H.

Theorem 1.1.29. Let H be a non-empty finite subset subset of G. If H is closed under

the operation in G then H is a subgroup of G.

Theorem 1.1.29 is not true if H is infinite. For example, N is an infinite subset of

(Z,+) and N is closed under addition. However N is not a subgroup of (Z,+).

Theorem 1.1.30. If H and K are subgroups of a group G then H ∩K is also a subgroup

of G.

It can be similarly proved that the intersection of any number of subgroups of G is

again a subgroup of G.
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The union of two subgroups of a group need not be a subgroup.

For example, 2Z and 3Z are subgroups of (Z,+) but 2Z ∪ 3Z is not a subgroup of Z

since 3, 2 ∈ 2Z ∪ 3Z but 3 + 3 = 5 /∈ 2Z ∪ 3Z.

Theorem 1.1.31. The union of two subgroups of a group G is a subgroup if and only if

one is contained in the other.

Cosets

Definition 1.1.32. Let H be a subgroup of a group G and a ∈ G. The sets aH =

{ah : h ∈ H} and Ha = {ha : h ∈ H} are called the left and right cosets of H in G,

respectively. The element a is called a representative of aH and Ha.

Example 1.1.33.

1. Let us determine the left cosets of (5Z,+) in (Z,+). Here the operation is +.

0 + 5Z = 5Z is itself a left coset. Another left coset is 1 + 5Z = {1 + 5n : n ∈ Z}.

We notice that this left coset contains all integers having remainder 1 when divided by

5.

Similarly 2 + 5Z = {2 + 5n : n ∈ Z}, 3 + 5Z = {3 + 5n : n ∈ Z} and 4 + 5Z =

{4 + 5n : n ∈ Z}.

These are all the left cosets of (5Z,+) in Z. Here also we note that all the left cosets

are mutually disjoint, and their union is Z.

In other words the collection of all left cosets forms a partition of the group.

2. Consider (Z12,⊕).

Then H = {0, 4, 8} is a subgroup of G. The left cosets of H are given by 0 + H =

{0, 4, 8} = H, 1 + H = {1, 5, 9}, 2 + H = {2, 6, 10}, and 3 + H = {3, 7, 11}. We notice

that 4 +H = {4, 8, 0} = H, and 5 +H = {5, 9, 1} etc.

Theorem 1.1.34. Let G be a group and H be a subgroup of G. Then

(i) a ∈ H ⇒ aH = H.

(ii) aH = bH ⇒ a−1b ∈ H. (iii) a ∈ bH ⇒ a−1 ∈ Hb−1.

(iv) a ∈ bH ⇒ aH = bH.
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Theorem 1.1.35. Let H be a subgroup of G. Then

(i) any two left cosets of H are either identical or disjoint.

(ii) union of all the left cosets of H is G.

(iii) the number of elements in any left coset aH is the same as the number of elements in

H.

This theorem shows that the collection of all left cosets forms a partition of the

group. The above result is true if we replace left cosets by right cosets. In what

follows, the result we prove for left cosets are also true for right cosets.

Remark 1.1.36. Let H be a subgroup of G. We define a relation in G as follows. Define

a ∼ b⇔ a−1b ∈ H. Then ∼ is an equivalence relation.

For, a−1a = e ∈ H, a ∼ a and hence ∼ is reflexive.

Now , a ∼ b⇒ a−1b ∈ H ⇒ (a−1b)−1 ∈ H ⇒ b−1a ∈ H ⇒ b ∼ a.

Therefore a ∼ b⇒ b ∼ a and ∼ is symmetric.

Now, a ∼ b and b ∼ c ⇒ a−1b ∈ H and b−1c ∈ H ⇒ (a−1b)(b−1c) ∈ H ⇒ a−1c ∈

H ⇒ a ∼ c. Hence ∼ is transitive and so ∼ is an equivalence relation.

Now, we claim that equivalence class [a] = aH. Let b ∈ [a]. Then b ∼ a.

∴ a−1b ∈ H.

∴ a−1b = h for some h ∈ H.

∴ b = ah Hence b ∈ aH.

∴ [a] ⊆ aH.

Also, b ∈ aH ⇒ b = ah for some h ∈ H.

⇒ a−1b = h ∈ H ⇒ a ∼ b⇒ b ∈ [a].

Thus the left cosets of H in G are precisely the equivalence classes determined by ∼. Hence

the left cosets form a partition of G.

Theorem 1.1.37. Let H be a subgroup of G. The number of left cosets of H is the same

as the number of right cosets of H.

Definition 1.1.38. Let H be a subgroup of G. The number of distinct left (right) cosets

of H in G is called the index of H in G and is denoted by [G : H].

Example 1.1.39. In (Z8,⊕), H = {0, 4} is a subgroup. The left cosets of H are given by

0 +H = {0, 4} = H

15



1 +H = {1, 5}

2 +H = {2, 6}

3 +H = {3, 7}

These are the four distinct left cosets of H. Hence the index of the subgroup H is 4. Note

that [Z8 : H]× [H] = 4× 2 = 8 = |Z8|.

Theorem 1.1.40 (Lagrange’s theorem). Let G be a finite group of order n and H be a

subgroup of G. Then the order of H divides the order of G.

A counting principle

Definition 1.1.41. Let A and B be two subsets of a group G. We define

AB = {ab : a ∈ A, b ∈ B}.

If H and K are two subgroups of G, then HK need not be a subgroup of G.

For example, consider G = S3. H = {e, p3} and K = {e, p4}. Then H and K are

subgroups of S3.

Also HK = {ee, ep4, ep3, p3p4} = {e, p4, p3, p2}. Now, p4p2 = p5 /∈ HK. Hence HK is

not a subgroup of S3.

Theorem 1.1.42. Let H and K be subgroups of a group G. Then HK is a subgroup of

G if and only if HK = KH.

Proof. Suppose HK is a subgroup of G.

Let kh ∈ KH, where h ∈ H and k ∈ K.

Now h = he ∈ HK and k = ek ∈ HK.

Because HK is a subgroup, it follows that kh ∈ HK. Hence, KH ⊆ HK.

On the other hand, let hk ∈ HK. Then (hk)−1 ∈ HK, so (hk)−1 = h1k1 for some

h1 ∈ H and k1 ∈ K.

Thus, hk = (h1k1)
−1 = k−11 h−11 ∈ KH.

This implies that HK ⊆ KH. Hence, HK = KH.

Conversely, suppose HK = KH. Let h1k1, h2k2 ∈ HK, where h1, h2 ∈ H and

k1, k2 ∈ K. We show that (h1k1)(h2k2)
−1 ∈ HK.

Now k2 ∈ K and h2 ∈ H.
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Therefore, k−12 h−12 ∈ KH = HK.

This implies that k−12 h−12 = h3k3 for some h3 ∈ H and k3 ∈ K.

Similarly, k1h3 ∈ KH = HK, so k1h3 = h4k4 for some h4 ∈ H and k4 ∈ K. Thus,

(h1k1)(h2k2)
−1 = h1k1k

−1
2 h−12 (because (h2k2)

−1 = k−12 h−12 )

= h1k1h3k3(substitute k−12 h−12 = h3k3)

= h1h4k4k3 ∈ HK(substitute k1h3 = h4k4)

Hence, HK is a subgroup of G.

Corollary 1.1.43. If H and K are subgroups of an abelian group G, then HK is a

subgroup of G.

Proof. Let x ∈ HK. Then x = ab where a ∈ H and b ∈ K.

Since G is abelian, ab = ba and so x ∈ KH.

Hence HK ⊆ KH.

Similarly KH ⊆ HK and HK = KH.

Hence HK is a subgroup of G.

Theorem 1.1.44. Let H and K be finite subgroups of a group G. Then

|HK| = |H||K|
H∩K .

Proof. Let us write A = H ∩K.

Since H and K are subgroups of G, A is a subgroup of G and since A ⊆ H, A is also a

subgroup of H.

By Lagranges theorem,|A| divides |H|.

Let n = |H|
|A| . Then [H : A] = n and so A has n distinct left cosets in H.

Let {x1A, x2A, . . . , xnA} be the set of all distinct left cosets of A in H.

Then H = ∪ni=1xiA.

Since A ⊆ K, it follows that

HK = (∪ni=1xiA)K = ∪ni=1xiK.

We now show that xiK ∩ xjK = Φ if i 6= j.

Suppose xiK ∩ xjK 6= Φ for some i 6= j.
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Then xjK = xiK. Thus, x−1i xj ∈ K.

Since x−1i xj ∈ H, x−1i xj ∈ A and so xjA = xiA.

This contradicts the assumption that x1A, . . . , xnA are all distinct left cosets.

Hence, x1K, . . . , xnK are distinct left cosets of K.

Also, |K| = |xiK| by Theorem 1.1.37 for all i = 1, 2, · · · , n. Thus,

HK| = |x1K|+ · · ·+ |xnK| = n|K| = |H||K|
|A| = |H||K|

|H∩K| .

Corollary 1.1.45. If H and K are subgroups of the finite group Gand o(H) >
√
G,

o(G) >
√
G, then H ∩K 6= {e}.

Proof. Since HK is a subset of G, o(HK) ≤ o(G). Also o(HK) = o(H)o(K)
o(H∩K)

> o(G)
o(H∩K)

.

This implies that o(H ∩K) > 1.

Corollary 1.1.46. Suppose G is a finite group of order pq where p and q are prime

numbers with p > q. Then that G can have at most one subgroup of order p.

Proof. For suppose H, K are subgroups of order p. Clearly H ∩K is a subgroup of G.

By the Corollary 1.1.45, H ∩K 6= (e), and by Lagrange’s Theorem, o(H ∩K) = p and

so H ∩K = K = H. Hence there is at most one subgroup of order p.

Example 1.1.47. Let H be a subgroup of G and a ∈ G. Then aHa−1 = {aga−1 : g ∈ H}

is a subgroup of G.

Proof. Clearly e = aea−1 ∈ aHa−1 and so aHa−1 6= ∅. Now, let x, y ∈ aHa−1. Then

x = ah1a
−1 and y = ah2a

−1 where h1, h2 ∈ H. Now, xy−1 = (ah1a
−1)(ah2a

−1)−1 =

(ah1a
−1)(ah−12 a−1) = a(h1h

−1
2 )a−1 ∈ aHa−1. Hence aHa−1 is a subgroup of G.

Cylic group

Definition 1.1.48. Let G be a group and a ∈ G. Then H = {an : n ∈ Z} is a subgroup

of G.

H is called the cyclic subgroup of G generated by a and is denoted by 〈a〉.

Example 1.1.49. 1. In (Z,+), 〈a〉 = 2Z which is the group of even integers.

2. In the group G = (Z12,⊕), 〈3〉 = {0, 3, 6, 9}, 〈5〉 = {0, 5, 10, 3, 8, 1, 6, 11, 4,

9, 2, 7} = Z12.
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3. In the group G = {1, i,−1,−i}, 〈i〉 = {i, i2, i3, · · · } = {i,−1,−i, 1} = G.

Definition 1.1.50. Let G be a group and let a ∈ G, a is called a generator of G if

〈a〉 = G.

A group G is cyclic if there exists an element a ∈ G such that 〈a〉 = G.

Note 1.1.51. If G is cyclic group generated by an element a, then every element of G is

of the form an for some n ∈ Z.

Example 1.1.52. 1. (Z,+) is a cyclic group and 1 is the generator of this group.

Clearly −1 is also a generator of this group. Thus a cyclic group can have more

than one generator.

2. (nZ,+) is a cyclic group and n and −n are generators of this group.

3. (Z8,⊕) is a cyclic group and 1, 3, 5, 7 are all generators of this group.

4. (Zn,⊕) is a cyclic group for all n ∈ N; 1 is a generator of this group. In fact if

m ∈ Zn and (m,n) = 1 then m is a generator of this group.

5. G = {1, i,−1,−i} is a cyclic group under usual multiplication; i is a generator, −i is

also a generator of G. However −1 is not a generator of G since 〈−1〉 = {1,−1} 6=

G.

6. G = {1, ω, ω2} where ω 6= 1 is a cube root of unity is a cyclic group, ω and ω2 are

both generators of this group.

7. In this group G = (Z7 − {0},�), 3 and 5 are both generators. Here 2 is not a

generator of G since 〈2〉 = {2, 4, 1} 6= G.

8. Let A be a set containing more than one element. Then (%(A),4) is not cyclic; for

let B ∈ %(A) be any element. Then B4B = Φ so that 〈B〉 = {B,Φ} 6= %(A).

9. (R,+) is not a cyclic group since for any x ∈ R, 〈x〉 = {nx : n ∈ Z} 6= R

Theorem 1.1.53. Any cyclic group is abelian.

Theorem 1.1.54. A subgroup of cyclic group is cyclic.
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Theorem 1.1.55. Every group of prime order is cyclic.

Theorem 1.1.56. Let G be a group of order n and a ∈ G. Then an = e.

Definition 1.1.57. Let G be a group and let a ∈ G. The least positive integer n(if it

exists) such that an = e is called the order of a. If there is no positive integer n such that

an = e, then the order of a is said to be infinite.

Example 1.1.58.

1. Consider the group S3, p1 =

(
1 2 3
2 3 1

)
, p21 =

(
1 2 3
2 3 1

)(
1 2 3
2 3 1

)
=

(
1 2 3
3 1 2

)
=

p4 and p31 =

(
1 2 3
3 1 2

)(
1 2 3
2 3 1

)
=

(
1 2 3
1 2 3

)
= e.

In this case, 3 is the least positive integer such that p31 = e. Thus p1 is of order 3.

2. Consider (R∗, ·), From this sequence of elements 2, 22, 23, . . . , 2n, . . .. In this case there

is no positive integer n such that 2n = 1 and 〈2〉 contains infinite numbers of elements.

Thus the order 2 is infinite.

Theorem 1.1.59. Let G be a group and a ∈ G. Then the order of a is the same as the

order of the cyclic group generated by a.

Theorem 1.1.60. Let G be a group and a be an element of order n in G. Then am = e if

and only if n divides m.

Normal Subgroup

Definition 1.1.61. A subgroup H of G is called a normal subgroup of G if ghg−1 ∈ H

for all g ∈ G and h ∈ H.

Example 1.1.62. 1. For any group G, {e} and G are normal subgroups.

2. In S3, the subgroup {e, p1, p2} is normal.

3. In S3, the subgroup {e, p3} is not a normal subgroup.

Example 1.1.63. The alternating group An is a subgroup of index 2 in Sn and hence is

a normal subgroup of Sn.

Lemma 1.1.64. Every subgroup of an abelian group is a normal subgroup.

20



Proof. For any g ∈ G and h ∈ G, ghg−1 = h ∈ H and hence H is normal subgroup of

G

Example 1.1.65.

1. nZ is a normal subgroup of (Z,+).

2. Every subgroup of (Zn,⊕) is normal.

3. Since any cyclic group is abelian any subgroup of a cyclic is normal.

Lemma 1.1.66. The intersection two normal subgroups of a group G is a normal sub-

group.

Proof. Let H and K be two normal subgroups of G.

Then H ∩ K is a subgroup of G. Now, let a ∈ G and x ∈ H ∩ K. Then x ∈ H and

x ∈ K.

Since H and K are normal axa−1 ∈ H and axa−1 ∈ K. Hence axa−1 ∈ H ∩K.

Thus H ∩K is a normal subgroup of G.

Lemma 1.1.67. The center Z(G) of a group G is a normal subgroup of G.

Proof. Let Z(G) = {a : a ∈ G, ax = xa for all x ∈ G}. Now let x ∈ Z(G) and a ∈ G.

Then ax = xa and so x = axa−1 ∈ Z(G). Hence Z(G) is a normal subgroup of G.

Theorem 1.1.68. Let H be a subgroup of index 2 in a group G. Then H is a normal

subgroup of G.

Proof. If a ∈ H then H = aH = Ha. If a /∈ H, then aH is a left coset different from H.

Hence H ∩ aH = ∅.

Further, since index of H in G is 2, H ∪ aH = G.

Hence aH = G−H. Similarly Ha = G−H so that aH = Ha.

Hence H is a normal subgroup of G.

Theorem 1.1.69. Let N be a subgroup of G. Then the following are equivalent.

(ii) aNa−1 = N for all a ∈ G.

(iii) aNa−1 ⊆ N for all a ∈ G.

(iv) ana−1 ∈ N for all n ∈ N and a ∈ G.
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Example 1.1.70. Let H be a subgroup of G. Let a ∈ G. Then aHa−1 is a subgroup of G.

Proof. e = aea−1 ∈ aHa−1 and hence aHa−1 6= Φ. Now, let x, y ∈ aHa−1. Then

x = ah1a
−1 and y = ah2a

−1 where h1, h2 ∈ H. Now, xy−1 = (ah1a
−1)(ah2a

−1)−1 =

(ah1a
−1)(ah−12 a−1) = a(h1h

−1
2 )a−1 ∈ aHa−1. ∴ aHa−1 is a subgroup of G.

Example 1.1.71. Show that if a group G has exactly one subgroup H of given order, then

H is a normal subgroup of G.

Proof. Let the order of H be m. Let a ∈ G.

Then by above problem, aHa−1 is also a subgroup of G.

We claim that |H| = |aHa−1| = m.

Now, consider f : H → aHa−1 defined by f(h) = aha−1. f is 1-1, for, f(h1) = f(h2)⇒

ah1a
−1 = ah2a

−1 ⇒ h1 = h2. f is onto, for, let x = aha−1 ∈ aHa−1. Then f(h) = x.

Thus f is a bijection. ∴ ‖H| = |aHa−1| = m.

But H is the only subgroup of G of order m. ∴ aHa−1 = H. Hence aH = Ha.

∴ H is a normal subgroup of G.

Example 1.1.72. Show that if H and N are subgroups of a group G and N is normal in

G, then H ∩N is normal in H. Show by an example that H ∩N need not be normal in

G.

Proof. Let x ∈ H ∩N and a ∈ H.

We claim that axa−1 ∈ H ∩N .

Now, x ∈ N and a ∈ H ⇒ axa−1 ∈ N (since N is a normal subgroup).

Also x ∈ H and a ∈ H ⇒ axa−1 ∈ H (since H is a group).

Hence axa−1 ∈ H ∩N .

∴ H ∩N is a normal subgroup of H.

The following example shows that H ∩N need not be normal in G.

Let G = S3. Take N = G and H = {e, p3}.

Now H ∩N = H which is not normal in G.

Example 1.1.73. If H is a subgroup of G and N is a normal subgroup of G then HN is

a subgroup of G.
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Proof. To prove that HN is a subgroup of G, it is enough if we prove that HN =

NH(theorem 1.9.17).

Let x ∈ HN . Then x = hn where h ∈ H and n ∈ N .

∴ x ∈ hN .

But hN = Nh(since N is normal)

∴ x ∈ Nh.

Hence x = n1h where n1 ∈ N . ∴ x ∈ Nh.

Hence HN ⊆ NH.

Similarly NH ⊆ HN .

∴ HN = NH. Hence HN is a subgroup of G.

Example 1.1.74. M and N are normal subgroups of a group G such that M ∩N = {e}.

Show that every element of M commutes with element of N .

Proof. Let a ∈M and b ∈ N . We claim that ab = ba.

Consider the element aba−1b−1. Since a−1 ∈ M and M is normal, ba−1b−1 ∈ M .

Also, since b ∈M , so that aba−1b−1 ∈ N .

Thus aba−1b−1 ∈M ∩N = {e}. ∴ aba−1b−1 = e, so that ab = ba.

Theorem 1.1.75. A subgroup N of G is normal if and only if the product of two right

cosets of N is again a right coset of N .

Proof. Suppose N is a normal subgroup of G. Then

NaNb = N(aN)b = N(Nab) (since aN = Na)

= NNab = Nab (since NN = N).

Conversely suppose that the product of any two right cosets of N is again a right

coset of N .

Then NaNb is a right coset of N .

Further ab = (ea)(eb) ∈ NaNb. Hence NaNb is the right coset containing ab.

∴ NaNb = Nab.

Now, we prove that N is a normal subgroup of G.

Let a ∈ G and n ∈ N . Then ana−1 = eana−1 ∈ NaNa−1 = Naa−1 = N .

∴ ana−1 ∈ N .

Hence N is a normal subgroup of G.
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Let Us Sum Up

In this section, we studied the

1. definitions and properties of a group with examples

2. permutation group with examples

3. subgroups of a group

4. cosets of a subgroup

5. cyclic group with examples

6. normal subgroup with examples.

Check your Progress

1. Which of the following is not a cyclic group?

(a) U8 (b) U9 (c) U17 (d) U18

2. The generator of Z20 is

(a) 2 (b) 3 (c) 4 (d) 5

3. The number of elements of order 2 in S3 is

(a) 1 (b) 2 (c) 3 (d) 4

4. Which of the following is an abelian group?

(a) Order of G is 5

(b) Order of G is 6

(c) Order of G is 10

(d) All of these

1.2 Another Counting Principle

Definition 1.2.1. Let G be a group. If a, b ∈ G, then b is said to be a conjugate of a in G

if there exists an element c ∈ G such that b = c−1ac.

We shall write, for this, a ∼ b and shall refer to this relation as conjugacy.
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Lemma 1.2.2. Conjugacy is an equivalence relation on G.

Proof. Define a relation ∼ on G by a ∼ b if a is conjugate to b

Clearly a = e−1ae and so a ∼ a.

If a ∼ b, then b = x−1ax for some x ∈ G, hence, a = (x−1)−1b(x−1) and since

y = x−1 ∈ G and a = y−1by, and hence b ∼ a.

Suppose that a ∼ b and b ∼ c where a, b, c ∈ G. Then b = x−1ax, c = y−1by for

some x, y ∈ G.

Substituting for b in the expression for c we obtain, c = y−1(x−1ax)y = (xy)−1a(xy)

and so a ∼ c.

Hence the conjugacy is an equivalence relation on G.

For a ∈ G, let C(a) = {x ∈ G : a ∼ x}.

Then C(a), the equivalence class of a in G under our relation, is usually called the

conjugate class of a in G.

From this, these conjugacy classes form a partition of G and hence G =
⋃
a∈GC(a).

Lemma 1.2.3. Let G be a group and Z(G) = {a : a ∈ G and ax = xa for all x ∈ G}.

Then Z(G) is a subgroup of G. Here Z(G) is the center of G.

Proof. Clearly ex = xe = x for all x ∈ G.

Hence e ∈ Z(G), so that Z(G) is non-empty.

Now, let a, b ∈ Z(G). Then ax = xa and bx = xb for all x ∈ G.

Now, bx = xb ⇒ b−1(bx)b−1 = b−1(xb)b−1 ⇒ (b−1b)xb−1 = b−1x(bb−1) ⇒ exb−1 =

b−1xe⇒ xb−1 = b−1x.

Now (ab−1)x = a(b−1x) = a(xb−1) = (ax)b−1 = (xa)b−1 = x(ab−1).

Thus ab−1 commutes with every element of G and so ab−1 ∈ Z(G).

Hence Z(G) is a subgroup of G.

Definition 1.2.4. If a ∈ G, then N(a), the normalizer of a in G, is the set N(a) = {x ∈

G : ax = xa}.

i.e., N(a) consists of precisely those elements in G which commute with a.

Lemma 1.2.5. N(a) is a subgroup of G.
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Proof. Clearly ea = ae = a. Hence e ∈ N(a) so that N(a) is non-empty.

Then ax = xa and ay = ya.

Now, ay = ya⇒ y−1a = ay−1.

Hence a(xy−1) = (ax)y−1 = (xa)y−1 = x(ay−1) = x(y−1a) = (xy−1)a.

Hence xy−1 commutes with a, xy−1 ∈ N(a) and so N(a) is a subgroup of G.

Lemma 1.2.6. Let H be a subgroup of G. Then N(H) = {g ∈ G : gHg−1 = H} is a

subgroup of G

Proof. Clearly aea−1 = e ∈ H and so e ∈ N(H).

Hence N(H) is non-empty.

Let x, y ∈ N(H).

Then xHx−1 = H and yHy−1 = H.

This implies (xy)H(xy)−1 = x(yHy−1)x−1 = xHx−1 = H.

Hence N(H) is a subgroup of G.

Theorem 1.2.7. If G is a finite group, then ca = o(G)/o(N(a)); in other words, the

number of elements conjugate to a in G is the index of the normalizer of a in G.

Proof. Let H = N(a), where a ∈ G and L = {gH : g ∈ G} be the set of all left cosets

of N(a) in G.

Define f : L → C(a) by f(gH) = gag−1 for all gH ∈ L.

Let xH, yH ∈ L.

Suppose xH = yH.

Then xy−1 ∈ H implies xy−1a = axy−1.

From this, we get x−1(xy−1ay = x−1axy−1y implies y−1ay = x−1ax.

Thus, f(xH) = f(yH) and so f is well defined.

Suppose f(xH) = f(yH).

Then xax−1 = yay−1 implies y−1xax−1x = y−1yay−1x.

From this, y−1xa = ay−1x and so y−1x ∈ H = N(a).

Thus xH = yH, since y−1x ∈ H ⇔ xH = yH.

Hence f is one to one.

For z ∈ C(a), z = cac−1 for some c ∈ G and by definition of f , we have z = cac−1 =
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f(cH) and f is onto.

Hence Ca = o(L) = o(G)/o(N(a)).

Corollary 1.2.8. (Class Equation for finite group) Let G be a finite group. Then o(G) =∑ o(G)
o(N(a))

, where this sum runs over one element a in each conjugate class.

Proof. By lem 1.2.2, for a ∈ G, let C(a) = {x ∈ G : a ∼ x}.

Then C(a), the equivalence class of a in G under our relation, is usually called the

conjugate class of a in G.

From this, these conjugacy classes form a partition of G and hence G =
⋃
a∈G

C(a).

By Theorem 1.2.7, ca = o(G)/o(N(a)) and

o(G) =
∑

o(C(a)) =
∑

Ca =
∑

o(G)/o(N(a)).

Lemma 1.2.9. a ∈ Z(G) if and only if N(a) = G. If G is finite, a ∈ Z(G) if and only if

o(N(a)) = o(G).

Proof. If a ∈ Z(G), then xa = ax for all x ∈ G, whence N(a) = G and so o(N(a)) =

o(G).

Corollary 1.2.10. (Class Equation for finite group) Let G be a finite group. Then

o(G) = o(Z(G)) +
∑

a/∈Z(G)

o(G)

o(N(a))
,

where this sum runs over one element a in each conjugate class.

Proof. If a ∈ Z(G), then ax = xa for all x ∈ G, C(a) = {gag−1 : g ∈ G} = {a} and

hence Ca = 1.

By Class equation,

o(G) =
∑

a∈Z(G)

o(G)

o(N(a))
+
∑

a/∈Z(G)

o(G)

o(N(a))
= o(Z(G)) +

∑
a/∈Z(G)

o(G)

o(N(a))

Example 1.2.11. Consider the group S3 = {e, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}.

We enumerate the conjugate classes: C(e) = {e},
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C(1, 2) = {g−1(1, 2)g : g ∈ S3} = {(1, 2), (1, 3), (2, 3)} and

C(1, 2, 3) = {(1, 2, 3), (1, 3, 2)}

Hence the class equation for S3 is Ce + C(1,2) + C(1,2,3) = 1 + 2 + 3

Theorem 1.2.12. If o(G) = pn where p is a prime number, then Z(G) 6= (e).

Proof. Since N(a) is a subgroup of G, o(N(a)) divides o(G) = pn and so o(N(a)) = pna.

Also a ∈ Z(G) if and only if na = n. Let m = o(Z(G)).

Then by Corollary 1.2.10, pn = o(G) = m+
∑

a/∈Z(G)

(pn/pna).

If a /∈ Z(G), then na < n, p divides pn − pna and so p divides
∑

a/∈Z(G)

pn−na.

Hence p divides pn −
∑

a/∈Z(G)

pn−na = m and so Z(G) 6= {e}.

Corollary 1.2.13. If o(G) = p2 where p is a prime number, then G is abelian.

Proof. Our aim is to show that Z(G) = G.

By Theorem 1.2.12, Z(G) 6= (e) is a subgroup of G so that o(Z(G)) = p or p2.

Suppose that o(Z(G)) = p; let a ∈ G, a /∈ Z(G). Thus Z(G) ⊂ N(a).

Since a ∈ N(a) and by Lagrange’s Theorem, o(N(a)) > p, o(N(a)) = p2 and so a ∈

Z(G), a contradiction.

Theorem 1.2.14. (Cauchy’s Theorem for abelian group) If G is a finite abelian group, p

is a prime number and p|o(G), then G has an element of order p.

Theorem 1.2.15. (Cauchy’s Theorem) If G is any finite group, p is a prime number and

p|o(G), then G has an element of order p.

Proof. To prove its existence we proceed by induction on o(G).

If o(G) = 2, then G = Z2 and so o(1) = 2.

If o(G) = Z3, then o(1) = o(2) = 3.

We assume the theorem to be true for all groups T such that o(T ) < o(G).

Let W be a proper subgroup of G.

Then o(W ) < o(G).

If p divides o(W ), then by our induction hypothesis, there exist a ∈ W such that ap = e

and a 6= e.

Suppose p doesnot divide o(W ) for any proper subgroups W of G.

If a /∈ Z(G), then N(a) is a proper subgroup of G, p doesnot divide o(N(a)) and so p
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divides o(G)/o(N(a)).

From this, we get p divides
∑

a/∈Z(G)

o(G)
o(N(a))

so p divides o(G)−
∑

a/∈Z(G)

o(G)
o(N(a))

.

Hence p divides o(Z(G)).

Since Z(G) is abelian and by Cauchy’s theorem for abelian group 1.2.14, there exist

an element x ∈ Z(G) such that xp = e.

We conclude this section with a consideration of the conjugacy relation in a specific

class of groups, namely, the symmetric groups Sn.

Given the integer n we say the sequence of positive integers n1, n2, . . . , nr constitute a

partition of n if n = n1 + n2 + · · ·+ nr. Let p(n) denote the number of partitions of n.

Let us determine p(n) for small values of n:

p(1) = 1 since 1 = 1 is the only partition of 1,

p(2) = 2 since 2 = 2 and 2 = 1 + 1,

p(3) = 3 since 3 = 3, 3 = 1 + 2, 3 = 1 + 1 + 1,

p(4) = 5 since 4 = 4, 4 = 1 + 3, 4 = 1 + 1 + 2, 4 = 1 + 1 + 1 + 1, 4 = 2 + 2

Some others are p(5) = 7, p(6) = 11, p(61) = 1, 121, 505. There is a large mathematical

literature on p(n).

Lemma 1.2.16. The number of conjugate classes in Sn is p(n), the number of partitions

of n.

Proof. We know that every permutation σ in Sn can be uniquely expressed as a product

of disjoint cycles.

If the cycles appearing have lengths n1, n2, · · · , nr, respectively,

n1 ≤ n2 ≤ · · · ≤ nr, then n = n1 + n2 + · · ·+ nr.

We say that σ has the cycle decomposition {n1, n2, · · · , nr}.

It is clear that the cycle decomposition of each σ ∈ Sn gives a partition of n.

Let Us Sum Up

In this section, we studied

1. Conjugacy class

2. Normalizer of an element in a group

29



3. Class equation for finite groups

4. Cauchy’s theorem.

Check your Progress

1. Which of the following is conjugate to (123)(4567) in S10?

(a) (12)(34567) (b) (567)(1234) (c) (12345)(67) (d) (123)(456)

2. Order of normalizer of e in S3 is

(a) 2 (b) 3 (c) 4 (d) 6

3. The class equation of a group of order 10 is

(a) 1+2+3+4=10 (b) 1+1+3+5=10

(c) 1+2+2+5=10 (d) 2+3+5=10

4. Let G be a group of order 60. Then

(a) G has an element of order 2

(b) G has an element of order 3

(c) G has an element of order 5

(d) All of these

1.3 Sylow’s Theorems

Before entering the first proof of the theorem we digress slightly to a brief number-

theoretic and combinatorial discussion. The number of ways of picking a subset of k

elements from a set of n elements can easily be shown to be(
n
k

)
= n!

k!(n−k)!

If n = pαm where p is a prime number and (p,m) = 1, and if pα|n but pα+1 - n, consider

(
pαm
pα

)
=

(pαm)!

(pα)!(pαm− pα)!

=
pαm(pαm− 1) · · · (pαm− i) · · · (pαm− pα + 1)

pα(pα − 1) · · · (pα − i) · · · (pα − pα + 1)
.

Theorem 1.3.1. (First part of Sylow’s Theorem) If p is a prime number and pα|o(G)

where α is non-negative integer, then G has a subgroup of order pα.
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Proof. LetM be the set of all subsets of G having pα elements.

Since pα | o(G), we can assume that o(G) = mpα where m > 0.

ThenM consists of
(
pαm
pα

)
elements.

Now, given M1,M2 ∈ M, define a relation M1 ∼ M2 if ∃ an element g ∈ G such that

M1 = M2g. We can easily verify that this is an equivalence relation onM.

Let r be the maximum natural number such that pr | m.

That is, pr+1 - m.

Claim: There is atleast one equivalence class of elements inM such that the number

of elements in this class is not a multiple of pr+1.

Suppose not, then pr+1 is a divisor of the size of each equivalence class.

⇒ pr+1 is a divisor of the number of elements inM.

⇒ pr+1 |
(
pαm
pα

)
, which is not possible, because pr+1 - m,

(
∵ pk | m iff pk |

(
pαm
pα

))
.

Hence our claim.

Let M = {M1,M2, · · · ,Mn} be such an equivalence class inM where pr+1 - n.

By the definition of the equivalence relation onM, if g ∈ G, for each i = 1, 2, · · · , n,

Mig = Mj for some j, 1 ≤ j ≤ n.

Let H = {g ∈ G : M1g = M1}.

Since M1e = M1, we have e ∈ H, and so H is non-empty.

If a, b ∈ H then M1a = M1 and M1b = M1.

⇒M1ab = (M1a)b = M1b = M1.

⇒ ab ∈ H.

∴ H is a subgroup of G.

Claim: o(H) = pα.

First, we prove that n.o(H) = o(G).

Consider a mapping φ : G
H
→M by φ(Ha) = M1a ∀a ∈ G.

Then, for all a, b ∈ G

φ(Ha) = φ(Hb) ⇐⇒ M1a = M1b

⇐⇒ M1ab
−1 = M1

⇐⇒ ab−1 ∈ H

⇐⇒ Ha = Hb.
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∴ φ is well-defined and 1− 1.

Also, each Mj in M is of the form M1a for some a ∈ G.

∴ φ is onto.

⇒ φ is a bijection.

⇒ φ
(
G
H

)
= |M |

⇒ o(G)
o(H)

= n

⇒ n o(H) = o(G).

Since pα | pαm and pr | m, we have pα+r | pαm = n o(H).

But pr+1 - n.

⇒ pα | o(H)

⇒ pα ≤ o(H). (1.1)

Next, if m1 ∈M1, then for all h ∈ H, m1h ∈M1.
(

by the definition of H
)
.

⇒M1 has atleast o(H) distinct elements.

That is, |M1| ≥ o(H).

But, W.K.T M1 contains pα elements because M1 ∈M.

∴ pα ≥ o(H). (1.2)

From (1.1) and (1.2), we have o(H) = pα.

Thus, G has a subgroup H of order pα.

In view of Sylow’s Theorem, we have the following.

Corollary 1.3.2. If pm|o(G), pm+1 - o(G), then G has a subgroup (p-Sylow subgroup) of

order pm.

Lemma 1.3.3. Let n(k) be defined by pn(k)|(pk)! but pn(k)+1 does not divide (pk)!. Then

n(k) = 1 + p+ · · ·+ pk−1.

Proof. If k = 1 then p! = 1.2...(p− 1).p, it is clear that p|p! but p2 - p!.

Hence n(1) = 1.

Clearly, only the multiples of p; that is, p, 2p, . . . , pk−1p.

In other words n(k) must be the power of p which divides (2p)(3p) · · · (pk−1p) =
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pp
k−1

(pk−1)!.

But then n(k) = pk−1 + n(k − 1).

Similarly, n(k − 1) = n(k − 2) + pk−2, and so on.

Write these out as n(k)−n(k−1) = pk−1, n(k−1)−n(k−2) = pk−2, . . ., n(2)−n(1) = p,

n(1) = 1.

Adding these up, with the cross-cancellation that we get, we obtain n(k) = 1+p+p2 +

· · ·+ pk−1.

We are now ready to show that Spk has a p-Sylow subgroup; that is, we shall show

a subgroup of order pn(k) in Spk .

Lemma 1.3.4. Let p be a prime number. Then Spk has a p-Sylow subgroup.

Proof. We go by induction on k.

If k = 1, then the element (1 2 . . . p), in Sp, is of order p, so generated a subgroup of

order p.

Since n(1) = 1, the result certainly checks out for k = 1.

Suppose that the result is correct for k − 1; we want then must follow for k.

Divide the integers 1, 2, . . . , pk into p clumps each with pk−1 elements as follows:

{1, 2, . . . , pk−1}, {pk−1 + 1, pk−1 + 2, . . . , 2pk−1}, . . .,{(p− 1)pk−1 + 1, . . . , pk}.

The permutation σ defined by σ = (1, pk−1+1, 2pk−1+1, . . . , (p−1)pk−1+1) · · · (j, pk−1+

j, 2pk−1 + j, . . . , (p − 1)pk−1 + 1 + j) · · · , (pk−1, 2pk−1, · · · , (p − 1)pk−1, pk) has the fol-

lowing properties: σp = e and If τ is a permutation that leaves all i fixed for i >

pk−1(hence, affects only 1, 2, . . . , pk−1), then σ−1τσ moves only elements in {pk−1 +

1, pk−1 + 2, . . . , 2pk−1}, and more generally, σ(−j)τσj moves only elements in {jpk−1 +

1, jpk−1 + 2, . . . , (j + 1)pk−1}.

Consider A = {τ ∈ Spk : τ(i) = i if i > pk−1}.

Then A is a subgroup of Spk and elements in a can carry out any permutation on

1, 2, . . . , pk−1.

From this it follows easily that A ∼= Spk−1.

By induction hypothesis, A has a subgroup P1 of order pn(k−1).

Let T = P1(σ
−1P1σ)(σ−2P1σ

2) · · · (σ−(p−1)P1σ
p−1) where Pi = σ−iP1σ

i.

Each Pi is isomorphic to P1 so has order pn(k−1).
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Also elements in distinct Pis influence non overlapping sets of integers, hence com-

mute.

Thus T is a subgroup of Spk . Since Pi ∩ Pj = (e) if 0 ≤ i 6= j ≤ p− 1, o(T ) = o(P1)
p =

ppn(k−1).

Since σp = e and σ−iP1σ
i = Pi, we have σ−1Tσ = T . Let P = {σjt : t ∈ T, 0 ≤ j ≤

p− 1}.

Since σ /∈ T and σ−1Tσ = T , T is a subgroup of Spk and o(P ) = po(T ) = p pn(k−1)p =

pn(k−1)p+1.

It is pn(k−1)p+1. But n(k−1) = 1+p+ · · ·+pk−2, hence pn(k−1)+1 = 1+p+ · · ·+pk−1 =

n(k).

Since o(P ) = pn(k), P is a p-Sylow subgroup of Spk .

Definition 1.3.5. Let G be a group, A,B subgroups of G. If x, y ∈ G define x ∼ y if

y = axb for some a ∈ A, b ∈ B.

Lemma 1.3.6. The relation defined above is an equivalence relation on G. The equiva-

lence class of x ∈ G is the set AxB = {axb| a ∈ A, b ∈ B}.

Proof. Let x, y ∈ G. Then x = exe, since e ∈ A ∩B.

Hence x ∼ x.

Suppose x ∼ y. Then y = axb for some a ∈ A and b ∈ B.

This implies x = a−1yb−1 and by definition, y ∼ x.

For x ∈ G, the equivalence class of x ∈ G is the set AxB = {axb| a ∈ A, b ∈ B}.

These equivalence classes form a partition of G and so G =
⋃
x∈G

AxB.

We call the set AxB a double coset of A,B in G.

Lemma 1.3.7. If A, B are finite subgroups of G, then

o(AxB) =
o(A)o(B)

o(A ∩ xBx−1)
.

Proof. Define T : AxB → AxBx−1 given by T (axb) = axbx−1 for all axb ∈ AxB.

Let axb, cxd ∈ AxB.

Suppose T (axb) = T (cxd).

Then axbx−1 = cxdx−1 and by cancellation law, we have axb = cxd and hence T is

one-to-one.
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For any y ∈ AxBx−1, y = axbx−1 = T (axb) and hence T is onto.

From this, we get o(AxB) = o(AxBx−1).

Since xBx−1 is a subgroup of G, of order o(B), o(AxB) = o(AxBx−1) = o(A) o(xBx−1)
o(A∩xBx−1)

=

o(A) o(B)
o(A∩xBx−1)

.

Lemma 1.3.8. Let G be a finite group and suppose that G is a subgroup of the finite

group M . Suppose further that M has a p-Sylow subgroup Q. Then G has a p-Sylow

subgroup P . In fact, P = G ∩ xQx−1 for some x ∈M .

Theorem 1.3.9. (Second Part of Sylow’s Theorem) If G is a finite group, p a prime and

pn|o(G) but pn+1 - o(G), then any two subgroups of G of order pn are conjugate.

Proof. Let A and B be subgroups of G, each of order pn.

We want to show that A = gBg−1 for some g ∈ G.

Decompose G into double cosets of A and B; G =
⋃
x∈G

AxB.

Now, by lem 1.3.7,

o(AxB) =
o(A)o(B)

o(A ∩ xBx−1)
.

If A 6= xBx−1 for every x ∈ G, then o(A ∩ xBx−1) = pm where m < n.

Thus

o(AxB) =
o(A)o(B)

pm
=
p2n

pm
= p2n−m

and 2n−m ≥ n+ 1.

Since pn+1|o(AxB) for every x and o(G) =
∑
x∈G

o(AxB), we would get the contradiction

pn+1|o(G).

Thus A = gBg−1 for some g ∈ G.

From this, we conclude that, for a given prime p, any two p-Sylow subgroups of G are

conjugate.

Lemma 1.3.10. The number of p-Sylow subgroups in G equals o(G)/o(N(P )), where P

is any p-Sylow subgroup of G. In particular, this number is a divisor of o(G).

Proof. Let P be a p-Sylow subgroup of G. Then N(P ) = {g ∈ G : gPg−1 = P} is a

subgroup of G and by Theorem 1.2.7, we get the required result.
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Theorem 1.3.11. (Third Part of Sylow’s Theorem) Let G be a finite group and p|o(G),

where p is prime. Then the number of p-Sylow subgroups in G is of the form 1 + kp.

Proof. Let P be a p-Sylow subgroup of G.

We decompose G into double cosets of P and P .

Thus G =
⋃
x∈G

PxP .

By Theorem 1.3.7,

o(PxP ) =
o(P )2

o(P ∩ xPx−1)
.

Thus, if P ∩ xPx−1 6= P , then pn+1|o(PxP ), where pn = o(P ).

If x /∈ N(P ), then pn+1|o(PxP ).

Also, if x ∈ N(P ), then PxP = P (Px) = P 2x = Px, so o(PxP ) = pn in this case.

Now

o(G) =
∑

x∈N(P )

o(PxP ) +
∑

x/∈N(P )

o(PxP ),

where each sum runs over one element from each double coset.

However, if x ∈ N(P ), since PxP = Px, the first sum is merely
∑

x∈N(P ) o(Px) over

the distinct cosets of P in N(P ).

Thus this first sum is just o(N(P )).

We saw that each of its constituent terms is divisible by pn+1, hence

pn+1|
∑

x/∈N(P )

o(PxP ).

We can thus write this second sum as

∑
x/∈N(P )

o(PxP ) = pn+1u.

Therefore o(G) = o(N(P )) + pn+1u, so

o(G)

o(N(P ))
= 1 +

pn+1u

o(N(P ))
.

Now o(N(P ))|o(G) since N(P ) is a subgroup of G, hence pn+1u|o(N(P )) is an integer.

Also, since pn+1 - o(G), pn+1 can’t divide o(N(P )).

But then pn+1u|o(N(P )) must be divisible by p, so we can write pn+1u|o(N(P )) as kp,
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where k is an integer.

Hence, the number of p-Sylow subgroups of G is

o(G)

o(N(P ))
= 1 + kp.

and by Lagrange’s Theorem, 1 + kp divides o(G).

Example 1.3.12. Let G be a group of order pqr, where p < q < r are primes. Then some

Sylow subgroup of G is normal.

Proof. Suppose that no Sylow subgroup of G is normal.

Then the number of p-Sylow subgroup of G is 1 + kp and 1 + kp 6= 1 divides qr.

Since q and r are distinct, 1 + kp = q, 1 + kp = r or 1 + kp = qr.

From this, we get G has at least q(p− 1) elements of order q(p− 1) elements of order

p.

Also the number of q-Sylow subgroups of G is 1 + kq = p, 1 + kq = r or 1 + kq = pr

and so G has at least r(q − 1) elements of q.

Simillarly, G has at least pq(r − 1) elements of order r.

Therefore, o(G) ≥ q(p− 1) + r(q− 1) + pq(r− 1) + 1 = pq− q+ rq− r+ pqr− pq > pqr,

a contradiction.

Hence some Sylow subgroup in G is normal.

Let Us Sum Up

In this section, learners studied

1. First part of Sylow theorem

2. Second part of Sylow theorem

3. Third part of Sylow theorem

4. Simple group.

Check your Progress

1. How many 3− sylow subgroups does the symmetric group S4 have?

(a) 3 (b) 4 (c) 2 (d) 5
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2. Let P be any p− sylow subgroup of G. Then the number of p− sylow subgroups

in G is

(a) o(G)
o(N(P ))

(b) o(G)
o(N(p))

(c) o(N(P )) (d) o(N(p))

3. Let G be a group of order 15. Then the number of 3− sylow subgroup of G is

(a) 0 (b) 1 (c) 3 (d) 5

Unit Summary

This unit discusses the fundamental concepts of a group with examples. Also, it

covers conjugacy classes, the counting principle and Sylow’s theorems. A class equa-

tion can be found for a finite group. In addition, one can calculate the number of p−

sylow subgroups in a group G.

Glossary

• N - The set of natural numbers

• Z - The set of integers

• Q - The set of rational numbers

• R - The set of real numbers

• C - The set of complex numbers

• Q∗ - The set of non-zero rational numbers

• R∗ - The set of non-zero real numbers

• C∗ - The set of non-zero complex numbers

• Z+ - The set of positive integers (or natural numbers)

• Q+ - The set of positive rational numbers

• R+ - The set of positive real numbers

• Permutation of A - A bijection from A to itself

• Sn - Symmetric group of degree n
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• An - The alternating group on n symbols

• [G : H] - The index of H in G

• Z(G) - Center of G

• C(a) - Conjugate class of a in G

• N(a) - Normalizer of a in G

• ca - The number of elements conjugate to a in G

• p(n) - The number of partitions of n

• AxB - A double coset of A,B in G

Self Assessment Questions

1. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of D6 and S3 × S3.

2. Derive the Class equation for Dihedral group Dn.

3. Derive the Class equation for Alternating group An for n ≥ 3.

4. Determine all conjugacy classes of Sn.

5. Prove that a group of order 200 has a normal Sylow 5-subgroup.

Exercises

1. If G is a group of order 231, then Z(G) contains a Sylow 11-subgroup of G and a

Sylow 7-subgroup is normal in G.

2. Let G be a group of order 105. If a Sylow 3-subgroup of G is normal, then G is

abelian.

3. If G is a non-abelian simple group of orders less than 100, prove that G is iso-

morphic to A5.

4. How many elements of order 7 must there be in a simple group of order 168?
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5. Let G be a group of order 1575. Prove that if a Sylow 3-subgroup of G is normal,

then a Sylow 5-subgroup and a Sylow 7-subgroup are normal. Also prove that G

is abelian.

Answers for Check your Progress

Section 1.1 1. (a) 2. (b) 3. (c) 4. (a)

Section 1.2 1. (b) 2. (d) 3. (c) 4. (d)

Section 1.3 1. (b) 2. (a) 3. (b)
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Unit 2

Finite abelian groups and Modules

Objectives

After reading this unit, learners will be able to

1. understand the concepts of solvable group

2. learn internal and external direct product of groups

3. analyze the structure of the finite abelian groups

4. study the basic ideas of Modules.

2.1 Solvable groups

Definition 2.1.1. A group G is said to be solvable if we can find a finite chain of sub-

groups G = N0 ⊃ N1 ⊃ N2 ⊃ ... ⊃ Nk = (e), where each Ni is a normal subgroup of

Ni−1 and such that every factor group Ni−1/Ni is abelian.

Example 2.1.2. Any abelian group is solvable.

Example 2.1.3. Any non-abelian simple group is not solvable.

Definition 2.1.4. Let G be a group and a, b ∈ G. Then aba−1b−1 is called the commutator

of a and b and is denoted by [a, b]. Let A = {aba−1b−1 : a, b ∈ G} = {[a, b] : a, b ∈ G} be

the set of all commutators of elements in G.

Definition 2.1.5. Let G be a group. The subgroup of G generated by the commutators

of elements of G is called the commutator subgroup of G. The commutator subgroup of a
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group G is denoted by G′ or G(1) or [G,G]. Note that commutator subgroup is also called

derived subgroup of G.

Theorem 2.1.6. Let G be a group. Then G′ = {e} if and only if G is abelian.

Proof. Let G′ be the commutator subgroup of G.

Assume that G′ = {e}.

Then by Definition 2.1.5, aba−1b−1 = e for all a, b ∈ G and hence ab = ba for all

a, b ∈ G.

Hence G is abelian.

Conversely, assume that G is abelian.

Then ab = ba for all a, b ∈ G which implies ab (ba)−1 = aba−1b−1 = e for all a, b ∈ G

and hence G′ = {e}.

Theorem 2.1.7. Let G be a group. Then

(i) G′ is a normal subgroup of G.

(ii) G/G′ is abelian.

(iii) If H is a subgroup of G, then G/H is abelian and H is a normal subgroup of G if

and only if G′ ⊆ H.

Proof. (i) Let g ∈ G and x ∈ G′.

Then x = c1 . . . cn where c
′
i s are commutators of elements in G and hence ci =

aibia
−1
i b−1i for some ai, bi ∈ G for all i = 1, . . . , n.

Now

gxg−1 = g (c1 . . . cn) g−1

= g
(
a1b1a

−1
1 b−11 · · · anbna−1n b−1n

)
g−1

=
(
ga1g

−1) (gb1g−1) (ga−11 g−1
) (
gb−11 g−1

)
· · ·
(
gang

−1)(
gbng

−1) (ga−1n g−1
) (
gb−1n g−1

)
Hence gxg−1 ∈ G′ and so G′ is normal subgroup of G.

(ii) By (i), G/G′ is a group and also aba−1b−1 ∈ G′ for all a, b ∈ G.

From this, we get abG′ = baG′ for all a, b ∈ G and so aG′bG′ = bG′aG′ for all a, b ∈ G.

Hence G/G′ is abelian.

(iii) Assume that G/H is abelian and H is a normal subgroup of G.
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Then xH yH = yH xH for all x, y ∈ G and so (xy) (yx)−1 ∈ H for all x, y ∈ G.

Thus xyx−1y−1 ∈ H for all x, y ∈ G and so G′ ⊆ H.

Conversely, assume that G′ ⊆ H.

For any g ∈ G and x ∈ H,

gxg−1 = gxg−1x−1x ∈ H, which shows that H is a normal subgroup of G.

Since G′ ⊆ H, aba−1b−1 ∈ H for all a, b ∈ G and so aH bH = bH aH for all a, b ∈ G.

Hence G/H is abelian.

Example 2.1.8. For n ≥ 3,

D′2n =

{
Zn if n is odd,
Zn

2
if n is even

Proof. Let D2n = {1, r, r2, . . . , rn−1, s, sr, . . . , srn−1}.

Then 〈
r2
〉

=

{
Zn if n is odd,
Zn

2
if n is even.

Hence it is enough to prove that D′2n = 〈r2〉.

As [r, s] = rsr−1s−1 = r2 ∈ D′2n and so 〈r2〉 ⊆ D′2n is clear.

Also D′2n/ 〈r2〉 is abelian and 〈r2〉 is a normal subgroup of D2n.

By Theorem 2.1.7(iii), D′2n ⊆ 〈r2〉 and hence D′2n = 〈r2〉.

Example 2.1.9. Q′8 = {±1}

Proof. Let Q8 = {±1,±i,±j,±k} be a non-abelian group of order 8.

Then by Theorem 2.1.6, {1} is not a commutator subgroup of Q8.

Note that {±1}, {±,±i}, {±1,±j} and {±1,±k} are nontrivial normal subgroup of

Q8.

Thus {±1} is the commutator subgroup of Q8.

Example 2.1.10. S ′n = An, n ≥ 3

Proof. An is a normal subgroup of Sn and |An| = n!
2

.

Then [Sn : An] = 2 and so Sn/An is abelian.

By Theorem 2.1.7(iii), S ′n ⊆ An.

Since An is generated by 3-cycles for n ≥ 3, it is enough to prove that every 3-cycle in

An is the commutator of some element in Sn.
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Let (a b c) be a 3-cycle in An.

Then (a b c) = (a b)(a c)(a b)−1(a c)−1 ∈ S ′n.

Hence An ⊆ S ′n and so S ′n = An.

Theorem 2.1.11. If G is a non-abelian simple group, then G is G′ = G.

Proof. Since G is simple, {e} and G are only normal subgroup of G.

Since G is non-abelian, by theorem 2.1.6, G′ 6= {e} and so G′ = G.

Example 2.1.12. A′n = An, n ≥ 5.

Proof. Clearly An is simple non-abelian group for n ≥ 5.

By Theorem 2.1.11, A′n = An, n ≥ 5.

Example 2.1.13. A′4 = V4

Proof. Let A4 = {e, (1 2 3), (1 2 4), (1 3 4), (2 3 4), (1 3 2), (1 4 2), (1 4 3),

(2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Let H = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} be a subgroup of A4.

Then [A4 : H] = 2, H is a normal subgroup of A4 and so A4/H is abelian.

By Theorem 2.1.7(iii), A′4 ⊆ H. For any (a b)(c d) ∈ H, (a b)(c d) = (a b c)(a b d)(a b c)−1(a b d)−1 ∈

A′4.

Hence A′4 = H.

Since every element in H other than identity is of order 2, H is isomorphic to V4.

Hence A′4 = V4.

Remark 2.1.14. Let G be a group. G′ is the commutator subgroup of G, which is also

denoted by G(1). G(2), the commutator subgroup of G(1) is the 2nd commutator subgroup

of G. In general G(n) is the nth commutator subgroup of the group G. If G(n) = {e} for

some positive integer n, the smallest such positive integer n is the commutator length or

derived length of the group G.

Theorem 2.1.15. Let G be a group. Then G is solvable if and only if G(m) = {e} for

some positive integer m.
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Proof. Assume that G is solvable.

Then there exists a series G0 = {e} ⊆ . . . ⊆ Gn = G such that Gi / Gi+1 and
Gi+1

Gi

is

abelian for every i = 0, . . . , n− 1.

By Theorem 2.1.7(iii), G′i+1 ⊆ Gi for every i = 0, . . . , n− 1. Thus G′ ⊆ Gn−1.

This implies, G(2) ⊆ G′n−1.

Again by Theorem 2.1.7(iii), G′n−1 ⊆ Gn−2 and so G(2) ⊆ Gn−2 and then G(3) ⊆ Gn−3.

Proceeding like this, a stage is reached where G(n) ⊆ G0 = {e}. Thus G(m) = {e} for

some positive integer m ≤ n.

Conversely, assume that G(m) = {e} for some positive integer m.

Consider the series G(m) = {e} ⊆ G(m−1) ⊆ . . . ⊆ G = G(0).

G(i+1) is the commutator subgroup of G(i) for every i = 0, . . . ,m− 1.

Hence by Theorem 2.1.7(i) and (ii), G(i+1) / G(i) and
G(i)

G(i+1)
is abelian for every i =

0, . . . ,m− 1.

Thus the series is a solvable series of G and G is solvable.

Example 2.1.16. Q8 is solvable.

Proof. Let Q8 = {±1,±i,±j,±k}.

Then by Example 2.1.9, Q′8 = {±1}, which is abelian.

Hence by Theorem 2.1.6, Q(2)
8 = {e} and by Theorem 2.1.15, Q8 is solvable.

Example 2.1.17. D2n is solvable.

Proof. By Example 2.1.8, D′2n =

{
Zn if n is odd,
Zn/2 if n is even.

Then D′2n is abelian. By Theorem

2.1.6, D(2)
2n = {e}. Hence by Theorem 2.1.15, D2n is solvable.

Example 2.1.18. For n ≥ 5, An is not solvable.

Example 2.1.19. A4 is solvable.

Proof. Clearly {e} ⊆ V4 ⊆ A4 is a solvable series for A4, hence is solvable.

Example 2.1.20. S3 and S4 are solvable.

Proof. From Example 2.1.10, S ′3 = A3 and so S ′3 is abelian.

By Theorem 2.1.6, S(2)
3 = {e}.
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Thus by theorem 2.1.15, S3 is solvable.

{e} ⊆ V4 ⊆ A4 ⊆ S4

is a solvable series for S4.

Hence, S4 is solvable.

Theorem 2.1.21. Subgroup of a solvable group is solvable

Proof. Let G be a solvable group and H be a subgroup of G.

Since G is solvable and by Theorem 2.1.15, G(n) = {e} for some positive integer n and

so H ′ ⊆ G′, H(2) ⊆ G(2) and so on.

In particular, H(n) ⊆ G(n) = {e}.

Thus H(m) = {e} for some positive integer m ≤ n.

Hence by Theorem 2.1.15, H is solvable.

Theorem 2.1.22. Homomorphic image of a solvable group is solvable.

Proof. LetG be a solvable group and let f : G −→ K be a homomorphism. Let a, b ∈ G.

Then aba−1b−1 ∈ G′, f (a) , f (b) ∈ f (G), f (aba−1b−1) ∈ f (G′) and so

f (a) f (b) f (a)−1 f (b)−1 ∈ (f (G))′.

Since f is a homomorphism, for every a, b ∈ G,

f
(
aba−1b−1

)
= f (a) f (b) f (a)−1 f (b)−1

. Hence (f (G))′ = f (G′).

Since G is solvable and by Theorem 2.1.15, there exists a positive integer n, such that

G(n) = {eG}. (f (G))′ = f (G′) implies that (f (G))(n) = f
(
G(n)

)
= f (eG) = eK .

Hence by Theorem 2.1.15, f (G) is solvable.

Theorem 2.1.23. Quotient group of a solvable group is solvable.

Proof. Let G be a solvable group and N be a normal subgroup of G.

Then G/N is a group.

Define f : G→ G/N by f (g) = gN .

Then f is a natural homomorphism and f (G) = G/N .

By Theorem 2.1.22, G/N is solvable.
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Remark 2.1.24. Let G be a solvable group. Suppose H is a subgroup of G with H 6= {e}.

Then H 6= H ′.

Proof. Suppose H = H ′, H(2) = H ′ = H.

Then H(n) = H for any positive integer n and also by Theorem 2.1.15, H is not

solvable, which gives a contradiction to Theorem 2.1.21.

Hence H 6= H ′.

Theorem 2.1.25. Let G be a group and N be a normal subgroup of G. Then G is solvable

if and only if N and G/N are solvable.

Proof. Assume that G is solvable.

Then by Theorem 2.1.21 and Theorem 2.1.23, N and G/N are solvable.

Conversely, assume that N and G/N are solvable.

Then there exists two series,

N0 = {e} ⊆ · · · ⊆ Nm = N

and

N =
G0

N
=
N

N
⊆ · · · ⊆

Gk

N
=
G

N

such that Ni /Ni+1 ,
Ni+1

Ni

is abelian for every i = 0, . . . ,m− 1 and
Gi

N
/
Gi+1

N
,
Gi+1/N

Gi/N
is abelian for every i = 0, . . . , k − 1.

Since
Gi

N
/
Gi+1

N
, gNhNg−1N ∈

Gi

N
which implies that ghg−1 ∈ Gi for every g ∈ Gi+1

and h ∈ Gi.

Hence Gi / Gi+1 for every i = 0, . . . , n− 1.

Now, Gi, N / Gi+1 and N / Gi and by third theorem of isomorphism
Gi+1

Gi

∼=
Gi+1/N

Gi/N
.

Since
Gi+1/N

Gi/N
is abelian,

Gi+1

Gi

is abelian.

Thus

N = G0 ⊆ · · · ⊆ Gk = G

is a series such that Gi / Gi+1 and
Gi+1

Gi

is abelian for every i = 0, . . . n− 1.

Hence

{e} = N0 ⊆ · · · ⊆ Nm = N = G0 ⊆ · · · ⊆ Gk

is a solvable series of G and so G is solvable.
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Lemma 2.1.26. Let G = Sn, where n ≥ 5. Then G(k) for k = 1, 2, 3, ..., contains every

3− cycle of Sn.

Proof. First, let us prove that if N is a normal subgroup of G = Sn, where n ≥ 5, which

contains every 3− cycle in Sn, then N ′ must also contain every 3− cycle.

For, let a = (123), b = (145) ∈ N. Since N ′ is a commutator subgroup of N ,

a−1b−1ab ∈ N ′.

That is,

(321)(541)(123)(145) ∈ N ′.

=⇒ (142) ∈ N ′

Since N ′ is a normal subgroup of G = Sn, for any π ∈ Sn, we have

π−1(142)π ∈ N ′.

Now, choose π ∈ Sn such that π(1) = i1, π(4) = i2 and π(2) = i3, where i1, i2, i3 are any

three distinct integers in the range from 1 to n.

Then

π−1(142)π = (i1i2i3) ∈ N ′.

Thus, N ′ contains all 3− cycles in Sn.

Let N = G.

Clearly, G itself is a normal subgroup of G and G contains all 3−cycles.

=⇒ G′ contains all 3−cycles.

Since G′ is normal in G, G(2) contains all 3− cycles.

Since G(2) is normal in G, G(3) contains all 3− cycles.

Continuing in this way, we have G(k) contains all 3− cycles of Sn for arbitrary k.

Hence the lemma.

Theorem 2.1.27. Sn is not solvable for n ≥ 5.

Proof. Let G = Sn where n ≥ 5.

Then by Lemma 2.1.26, G(k) contains all 3− cycles in Sn for every k.

=⇒ G(k) 6= {e} for any k.

We know that, " A group G is solvable if and only if G(k) = {e} for some integer k."

This implies Sn is not solvable.
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Let Us Sum Up

In this section, we studied

1. solvable groups with examples

2. description for solvability using the commutator subgroup

Check your progress

1. Which of the following is true?

(a) Sn is solvable for all n.

(b) Sn is solvable if and only if n ≤ 4.

(c) Sn is not solvable for any n.

(d) Sn is solvable for all even n.

2. Which of the following is the smallest non-abelian solvable group?

(a) S3 (b) Z6 (c) A5 (d) D4

2.2 Direct Products

Definition 2.2.1. Let n > 1 be any positive integer and let (G1, ∗1), . . . , (Gn, ∗n) be any

n groups. Let

G = G1 ×G2 × · · · ×Gn = {(x1, . . . , xn) : xi ∈ Gi}

Define ∗ on G by (x1, . . . , xn) ∗ (y1, . . . , yn) = (x1 ∗1 y1, x2 ∗2 y2, . . . , xn ∗n yn). Then

(e1, e2, . . . , en) is an identity element of G, where each ei is identity element of Gi. Also

(x−11 , x−12 , . . . , x−1n ) is an inverse of (x1, . . . , xn) in G. Hence (G, ∗) is a group.

We call this group G the external direct product of G1, . . . , Gn.

In particular, Let A and B be any two groups. Then the cartesian product of

G = A×B of A and B is given by

A×B = {(a, b) : a ∈ A, b ∈ B}.

This G = A×B is a group under the product defined by (a1, b1)(a2, b2) = (a1a2, b1b2).

Then G = A×B is called the External direct product of A and B.
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Definition 2.2.2. Let G be a group and N1, N2, . . . , Nn normal subgroups of G such that

(i) G = N1N2 . . . Nn.

(ii) Given g ∈ G then g = m1m2 . . .mn, mi ∈ Ni in a unique way.

We then say that G is the internal direct product of N1, N2, . . . , Nn.

Result 2.2.3. Let Ā = {(a, f) ∈ G : a ∈ A} ⊂ G = A × B, where f is the unit

element of B. Then Ā is a normal subgroup of G, and is isomorphic to A.

Proof. If e is the unit element of A, then clearly (e, f) ∈ Ā.

∴ Ā 6= φ

Let (a1, f) , (a2, f) ∈ Ā. Then

(a1, f) (a2, f)−1 = (a1, f)
(
a−12 , f−1

)
=
(
a1a

−1
2 , ff−1

)
=
(
a1a

−1
2 , f

)
∈ Ā

∴ Ā is a subgroup of G.

Next, let (a1f) ∈ Ā and (a1, b1) ∈ G = A×B. Then

(a1, b1) (a1f) (a1, b1)
−1 = (a1, b1) (a1f)

(
a−11 , b−11

)
=
(
a1aa

−1
1 , b1fb

−1
1

)
=
(
a1aa

−1
1 , b1b

−1
1

)
=
(
a1aa

−1
1 , f

)
∈ Ā

⇒ Ā is a normal subgroup of G.

Now, define φ : A→ Ā by φ(a) = (a, f).

Let a1, a2 ∈ A such that φ (a1) = φ (a2)

⇔ (a1, f) = (a2, f)

⇔ a1 = a2

∴ φ is well-defined and 1− 1.

Clearly φ is onto.
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Let a1, a2 ∈ A.

Then φ (a, a3) = (a1a3, f)
= (a1, f) (a2,, f)

= φ (a1)φ (a2)

⇒ φ is a homomorphism.

∴ Ā is isomorphic to A.

Result 2.2.4. Let B̄ = {(e, b) ∈ G : b ∈ B} ⊂ G = A × B, When e is the unit element

of A. Then B̄ is normal subgroup of G, and is isomorphic to to B

Proof. If e is the unit element of B, then clearly (e, b) ∈ B̄

∴ B̄ 6= φ
Let (e, b1) , (e,, b2) ∈ B̄.Then

(e, b1) (e1b2)
−1 = (e1b1)

(
e−1, b−12

)
= (e1b1)

(
e1b
−1
2

)
=
(
ee, b1b

−1
2

)
=
(
e1b1b

−1
2

)
∈ B̄

∴ B̄ is subgroup of G.

Next, Let (e, b) ∈ B̄ and (a1, b1) ∈ G = A×B

(a1, b1) (e1, b) (a1, b1)
−1 = (a1, b1) (e1, b)

(
a−11 , b−11

)
= (a1, e, b, b)(a

−1
1 , b−11 )

= (a1, b, b)(a
−1
1 , b−11 )

= (a1(a
−1
1 ), (b1b

−1
1 )

= (e, b1bb
−1
1 ) ∈ B̄.

∴ B̄ is normal subgroup of G.

Now define φ : B → B̄ by φ(b) = (e, b).

Let b1, b2 ∈ B. Then φ(b1) = φ(b2).

φ is well defined and one-one. Clearly, φ is onto.

∴ φ is homomorphism.

⇒ B̄ is isomorphic to B.
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Result 2.2.5. G = ĀB̄ and every g ∈ G has a unique decomposition in the form g = āb̄

with ā ∈ Ā and b̄ ∈ B̄.

Proof. Let g ∈ G = A×B.

Then g = (a, b) where a ∈ A and b ∈ B.

=⇒ g = (a, f)(e, b)

=⇒ g = āb̄ where ā = (a, f) ∈ Ā and b̄ = (e, b) ∈ B̄.

To prove the uniqueness, let us assume that g = x̄ȳ where x̄ ∈ Ā and ȳ ∈ B̄.

Then x̄ = (x, f) for some x ∈ A and ȳ = (e, y) for some y ∈ B. Now,

(a, b) = g = x̄ȳ = (x, f)(e, y) = (x, y)

=⇒ a = x, b = y, ā = x̄andb̄ = ȳ.

Thus, G = ĀB̄ where Ā, B̄ are normal subgroups of G in which every g ∈ G has a

unique representation of the form g = āb̄ where ā ∈ Ā, b̄ ∈ B̄.

Lemma 2.2.6. Suppose that G is the internal direct product of N1, . . . , Nn. Then for

i 6= j, Ni ∩Nj = {e}, and if a ∈ Ni, b ∈ Nj then ab = ba.

Proof. Suppose that x ∈ Ni ∩Nj.

Then we can write x as x = e1 . . . ei−1xei+1 . . . ej . . . en where et = e, viewing x as an

element in Ni.

Similarly, we can write x as x = e1 . . . ei . . . ei−1xei+1 . . . em where et = e, viewing x as

an element of Nj.

But every element and so, in particular x has a unique representation in the form

m1m2 . . .mn, where mi ∈ N1, . . . ,mn ∈ Nn.

Since the two decompositions in this form for x must coincide, the entry from Ni in

each must be equal.

In our first decomposition this entry is x, in the other it is e; hence x = e.

Thus Ni ∪Nj = {e} for i 6= j.

Suppose a ∈ Ni, b ∈ Nj, and i 6= j.

Then aba−1 ∈ Nj since Nj is normal; thus aba−1b−1 ∈ Nj.

Similarly, since a−1 ∈ Ni, ba−1b−1 ∈ Ni, whence aba−1b−1 ∈ Ni.

But then aba−1b−1 ∈ Ni ∩Nj = {e}.

Thus aba−1b−1 = e; this gives the desired result ab = ba.
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Theorem 2.2.7. Let G be a group and suppose that G is the internal direct product of

N1, . . . , Nn. Let T = N1 ×N2 × · · · ×Nn. Then G and T are isomorphic.

Proof. Define the mapping Ψ : T → G by

Ψ((b1, b2, . . . , bn)) = b1b2 · · · bn,

where each bi ∈ Ni, i = 1, . . . , n.

We claim that Ψ is an isomorphism of T onto G. If x ∈ G then x = a1a2 . . . an for some

a1 ∈ N1, . . . , an ∈ Nn.

But then Ψ((a1, a2, . . . , an)) = a1a2 . . . an = x and hence Ψ is onto.

The mapping Ψ is one-to-one by the uniqueness of the representation of every element

as a product of elements from N1, . . . , Nn.

For, if Ψ((a1, . . . , an)) = Ψ((c1, . . . , cn)), where ai ∈ Ni, ci ∈ Ni, for i = 1, 2, . . . , n, then,

by definition, a1a2 . . . an = c1c2 . . . cn.

The uniqueness in the definition of internal direct product forces a1 = c1, a2 = c2, . . . , an =

cn. Thus Ψ is one-to-one.

If X = (a1, . . . , an), Y = (b1, . . . , bn) are elements of T then

Ψ(XY ) = Ψ((a1, . . . , an)(b1, . . . , bn)) = Ψ(albl, a2b2, . . . , anbn) = a1b1a2b2 . . . anbn.

Thus However, by Lemma 2.2.6, aibi = biai if i 6= j.

This implies that a1b1 . . . anbn = a1a2 . . . anb1b2 . . . bn.

Thus Ψ(XY ) = a1a2 . . . anb1b2 . . . bn.

But we can recognize a1a2 . . . an as Ψ((a1, a2, . . . , an)) = Ψ(X) and b1b2 . . . bn as Ψ(Y ).

Hence Ψ(XY ) = Ψ(X)Ψ(Y ).

Remark 2.2.8. If G = G1 × · · · × Gn is the external direct product of G1, . . . , Gn, then

Hi = {(e1, . . . , ei−1, xi, ei+1, . . . , en) ∈ G : x ∈ Gi} is a normal subgroup of G and by

definition 2.2.2 and Lemma 2.2.6, G is internal direct product of H1, . . . , Hn.

Theorem 2.2.9. Let G be a finite abelian group. Then G is isomorphic to the direct

product of its Sylow subgroups.

Proof. Let o(G) = pk11 · · · pkrr > 1, where p1, . . . , pr are distinct primes.

Since G is abelian, all p-Sylow subgroups are normal and so G has unique p-Sylow

subgroup for all prime p divides o(G).
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Let Hi be pi-Sylow subgroup of G and o(Hi) = pkii for i = 1, 2, . . . , r.

Then Hi is normal subgroup of G, Hi ∩Hj = {e} for all i 6= j and o(HiHj)p
ki
i p

kj
j .

By Theorem 1.1.44,

o(H1 · · ·Hr) = o((H1 · · ·Hr−1)Hr) =
o(H1 · · ·Hr−1)o(Hr)

o((H1 · · ·Hr−1) ∩Hr)
= o(G).

.

Since each Hi is normal, H1 · · ·Hr is subgroup of G and so G = H1 · · ·Hr.

Hence, by Theorem 2.2.7, G is the external direct product of H1, . . . , Hr.

Example 2.2.10. Let G = {e, a, b, c} be the Klein 4-group. Then H = {e, a} and K =

{e, b} are normal subgroups of G, H ∩K = {e} and HK = G. Hence G is the internal

direct product of H and K and so Theorem 2.2.7, G = Z2 × Z2.

Example 2.2.11. Let S3 = {e, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)}. Then

H = {e, (1 2 3), (1 3 2)} is unique nontrivial proper normal subgroup of S3 and so

S3 is not the internal direct product of its normal subgroups.

Let Us Sum Up

In this section, we studied the concepts of internal and external direct products of

group.

Check your Progress

1. The external direct product of two groups G and H consists of elements from

(a) G∪H (b) G and H with a defined operation (c) G∩H (d) None of these

2. If G is the internal direct product of two subgroups H and K, then

(a) H ∩K = G (b) H ∩K = {e} (c) H ∪K = {e} (d) H ∩K 6= {e}

2.3 Finite abelian groups

Our first step is to reduce the problem to a slightly easier one. If we knew that each

such Sylow subgroup was a direct product of cyclic groups we could put the results

together for these Sylow subgroups to realize G as a direct product of cyclic groups.

Thus it suffices to prove the following theorem for abelian groups of order pn,

where p is a prime.
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Theorem 2.3.1. Every finite abelian group is the direct product of cyclic groups.

Proof. Let a1 be an element in G of highest possible order, pn1, and let A1 = (a1).

Pick b2 in G such that b̄2, the image of b2 in Ḡ = G/A1, has maximal order pn2.

Since the order of b̄2 divides that of b2, and since the order of a1 is maximal, we must

have that n1 ≥ n2.

In order to get a direct product of A1 with (b2) we would need A1 ∩ (b2) = (e); this

might not be true for the initial choice of b2, so we may have to adapt the element b2.

Suppose that A1 ∩ (b2) 6= (e); then, since bpn22 ∈ A1 and is the first power of b2 to fall in

A1 we have that bpn22 = ai1.

Therefore (ai1)
pn1−n2 = (bp

n2

2 )p
n1−n2 = b

pn1
2 = e, whence (ai1)

pn1−n2 = e. Since a1 is of

order pn1 we must have that pn1|ipn1−n2 , and so pn2|i.

Thus, re-calling what i is, we have bp
n2

2 = ai1 = ajp
n2

1 . This tells us that if a2 = a−j1 b2

then ap
n2

2 = e.

The element a2 is indeed the element we seek. Let A2 = (a2). We claim that A1 ∩A2 =

(e).

For, suppose that at2 ∈ A1; since a2 = a−j1 b2, we get (a−j1 b2)
t ∈ A1 and so bt2 ∈ A1.

By choice of b2, this last relation forces pn2|t, and since ap
n2

2 = e we must have that

at2 = e. Hence A1 ∩ A2 = (e).

We continue one more step in the program we have outlined. Let b3 ∈ G map into

an element of maximal order in G/(A1A2).

If the order of the image of b3 in G/(A1A2) is pn3, we claim that n3 ≤ n2 ≤ n1.

By the choice of n2 , bp
n2

3 ∈ A1 so is certainly in A1A2. Thus n3 ≤ n2.

Since bp
n2

3 ∈ A1A2, b
pn2
3 = ai11 a

i2
2 . We claim that pn3|i1 and pn3|i2.

For, bp
n2

3 ∈ A1 hence (ai11 a
i2
2 )pn2−n3 = (bp

n3

3 )p
n3−n2 = bp

n2

3 ∈ A1.

This tells us that ai2p
n2−n3

2 ∈ A1 and so pn2 |i2pn2−n3, which is to say, pn3|i2.

Also bp
n1

3 = e, hence (ai11 a
i2
2 )pn1−n3 = bp

n1

3 = e; this says that ai11 )pn1−n3 ∈ A1 ∩A2 = (e),

that is, ai1p
n1−n3

1 = (e).

This yields that pn3|i1. Let i1 = j1p
n3 , i2 = j2p

n3; thus b3pn3 = aj1p
n3

1 aj2p
n3

2 .

Let a3 = a−j11 a−j22 b3, A3 = (a3); note that ap
n3

3 a = e.

We claim that A3 ∩ (A1A2) = (e). For if at3 ∈ A1A2 then (a−j11 a−j22 b3)
t ∈ A1A2, giving us

bt3 ∈ A1A2. But then pn3|t, whence, since ap
n3

3 = e, we have at3 = e.
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Thus, A3 ∩ (A1A2) = (e).

Continuing this way we get cyclic subgroups A1 = (a1), A2 = (a2), . . . , Ak = (ak) of

order pn1 , pn2 , . . . , pnk respectively, with n1 ≥ n2 ≥ · · · ≥ nk such that G = A1A2 . . . Ak

and such that, for each i, Ai ∩ (A1A2 . . . Ai−1) = (e).

This tells us that every x ∈ G has a unique representation as x = a′1a
′
2 . . . a

′
k where

a′1 ∈ A1, . . . , a
′
k ∈ Ak.

Hence, G is the direct product of the cyclic subgroups A1, A2, . . . , Ak.

Definition 2.3.2. If G is an abelian group of order pn, p a prime, and G = A1 × A2 ×

· · · ×Ak where each Ai is cyclic of order pni; with n1 ≥ n2 ≥ . . . nk > 0, then the integers

n1, n2, . . . , nk are called the invariants of G.

Theorem 2.3.3. Let G be a group and A and B be subgroups of G. If

(i) G = AB

(ii) ab = ba for all a ∈ A, b ∈ B, and

(iii) A ∩B = {e},

prove that G is an internal direct product of A and B.

Proof. Let us first show that A and B are normal subgroup of G.

For this, let a ∈ A, g ∈ G.

There exist c ∈ A and b ∈ B such that g = cb by(i).

Now gag−1 = (cb)a(cb)−1 = cbab−1c−1 = cabb−1c−1 = cac−1 ∈ A.

Hence, A is a normal subgroup of G.

Similarly, B is a normal subgroup of G.Let g ∈ G.

Then g = ab for some a ∈ A, b ∈ B.

Suppose g = a1b1, where a1 ∈ A, b1 ∈ B.

Then ab = a1b1, which implies that a−11 a = b1b
−1 ∈ A ∩B = {e}.

Thus a = a1 and b = b1.

Therefore, we find that every element g of G can be expressed uniquely as g = ab,

a ∈ A, b ∈ B.

Consequently, G is an internal direct product of A,B.

Theorem 2.3.4. Let A and B be two cyclic groups of order m and n, respectively. Show

that A×B is a cyclic group if and only if gcd(m,n) = 1.
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Proof. Let A = 〈a〉 for some a ∈ A and B = 〈b〉 for some b ∈ B.

Suppose gcd(m,n) = 1. Let g = (a, b).

Then gmn = (a, b)mn = (amn, bmn) = (eA, eB), where eA denotes the identity of A and

eB denotes the identity of B.

Suppose o(g) = t. Then (a, b)t = (eA, eB).

This implies that at = eA and bt = eB.

Thus, m|t and n|t. Since gcd(m,n) = 1, mn|t.

Hence, mn is the smallest positive integer such that gmn = e.

Thus, o(g) = mn.

Now |A× B| = mn and A×B contains an element g of order mn.

As a result, A×B is cyclic.

Conversely, assume that A×B is a cyclic and gcd(m,n) = d 6= 1.

Let (a, b) ∈ A×B. Then o(a)|m and o(b)|n.

Now mn
d

= m
d
n = mn

d
is and integer and mn

d
< mn.

Also,

(a, b)
mn
d = (am

n
d , bn

m
d ) = (eA, eB).

Hence, A×B does not contain any element of order mn.

This implies that A×B is not cyclic, a contradiction.

Therefore, gcd(m,n) = 1.

Let Us Sum Up

In this section, we studied the structure of finite abelian groups. In particular, the

fundamental theorem of finite abelian groups.

Check your Progress

1. According to fundamental theorem of finite abelian groups, every finite abelian

group can be written as

(a) a direct sum of simple groups

(b) a direct product of cyclic groups

(c) a direct sum of normal subgroups

(d) a quotient of simple groups.
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2. A finite abelian group of order 18 can be expressed as

(a) Z6 × Z3 (b) Z2 × Z9 (c) Z18 (d) All of these

2.4 Modules

Definition 2.4.1. Let R be any ring. A non-empty set M is said to be an R− module

(or a module over R) if M is an abelian group under an operation + such that for every

r ∈ R and m ∈M , there exists an element rm ∈M such that

(i) r(a+ b) = ra+ rb

(ii) r(sa) = (rs)a

(iii) (r + s)a = ra+ sa ∀a, b ∈M and r, s ∈ R.

Definition 2.4.2. If R has a unit element 1, and if 1.m = m ∀ m ∈ M , then M is called

a unital R− module.

Note 2.4.3. If R is a field, then a unital R− module is nothing but a vector space over R.

Example 2.4.4. Every abelian group G is a module over the ring of integers.

Definition 2.4.5. An additive subgroup A of the R− module M is called a submodule of

M if whenever r ∈ R and a ∈ A, then ra ∈ A

Definition 2.4.6. IfM is an R−module and ifM1,M2, ...,Ms are submodules ofM , then

M is said to be the direct sum of M1,M2, ...,Ms if every element m ∈ M can be written

in a unique way as m = m1 +m2 + ...+ms where m1 ∈M1, m2 ∈M2,...,ms ∈Ms,

Definition 2.4.7. An R−moduleM is said to be finitely generated if there exists elements

a1, a2, ..., an ∈ M such that every m ∈ M is of the form m = r1a1 + r2a2 + ...rnan where

r1, r2, ..., rn ∈ R.

Definition 2.4.8. An R− module M is said to be cyclic if there is an element m0 ∈ M

such that every m ∈M is of the form m = rm0 where r ∈ R.

For example, if we consider R as the ring of integers, then a cyclic R− module is nothing

but a cyclic group.
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Definition 2.4.9. The number of elements in a minimal generating set is called the rank

of M .

Definition 2.4.10. An integral domain R is said to be a Euclidean ring if for every a 6= 0

in R, there is a non-negative integer d(a) such that

1. For all a, b ∈ R, both non-zero d(a) ≤ d(ab)

2. For any a, b ∈ R, both non-zero, there exists t, r ∈ R such that a = tb + r where

either r = 0 (or) d(r) < d(b).

Theorem 2.4.11 (Fundamental theorem on finitely generated modules over Eu-

clidean rings). Let R be a Euclidean ring. Then any finitely generated R− module M is

the direct sum of a finite number of cyclic submodules.

Proof. Suppose that the given Euclidean ring is a ring of integers, and M is an abelian

group with a finite generating set.

Our proof now proceeds by the induction on the rank of M ,

If the rank of M is 1, then M is generated by a single element, and hence it is

cyclic.

So, the theorem is true in this case.

Suppose that the result is true for all abelian groups of rank q − 1.

Now, assume that M is an abelian group of rank q.

Then, any minimal generating set of M consists of q elements.

Given any minimal generating set {a1, a2, ..., aq} of M , if any relation of the form

n1a1+n2a2+...+nqaq = 0 (n1, n2, ..., nq are integers) =⇒ n1a1 = n2a2 = ... = nqaq = 0,

then M is the direct sum of M1,M2, ...,Mq where each Mi is the cyclic module (cyclic

subgroup) generated by ai.

So, the theorem is true in this case also.

Consequently, given any minimal generating set {b1, b2, ..., bq} of M , there must

be integers r1, r2, ..., rq such that r1b1 + r2b2 + ... + rqbq = 0 and in which not all of

r1b1, r2b2, ..., rqbq are 0.

Among all possible such relations for all minimal generating sets, there is a smallest

positive integer occurring as a coefficient.
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Let this integer be s1, and let the corresponding minimal generating set be {a1, a2, ..., aq}.

Thus,

s1a1 + s2a2 + ...+ sqaq = 0. (2.1)

We claim that if

r1a1 + ...+ rqaq = 0, (2.2)

then s1|r1.

Let r1 = ms1 + t where 0 ≤ t < s1.

Let us prove that t = 0.

Now, multiplying (2.1) by m and subtracting from (2.2), we get

(r1 −ms1)a1 + (r2 −ms2)a2 + ...+ (rq −msq)aq = 0

=⇒ ta1 + (r2 −ms2)a2 + ...+ (rq −msq)aq = 0

=⇒ t = 0,

because t < s1 and s1 is the minimal positive integer occurring in such a relation.

∴ s1|r1.

Next, we claim that s1|si for i = 2, 3, ..., q.

Suppose not, then s1 - s2 (say).

Then s2 = m2s1 + t, 0 < t < s1.

Now, a′1 = a1 +m2a2, a2, a3, ..., aq also generate M .

Further, s1a′1 + ta2 + s3a3 + ...+ sqaq = 0.

∴ t occurs as a coefficient in same relation among elements of a minimal generating

set.

But, by the choice of s1, either t = 0 or t ≥ s1.

=⇒ t = 0.

Thus, s1 | s2.

Similarly, we can prove that s1 | si for i = 3, 4, ..., q. Let us write

si = mis1 for i = 2, 3, ..., q. (2.3)
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Consider the elements a1∗ = a1 +m2a2 +m3a3 + ...+mqaq, a2, a3, ..., aq.

Clearly, the above elements generate M . Moreover,

s1a1∗ = s1a1 +m2s1a2 +m3s1a3 + ...+mqs1aq

= s1a1 + s2a2 + ...+ sqaq(by(2.3))

= 0, (by(2.1)). (2.4)

If r1a1 ∗+r2a2 + ...+ rqaq = 0, then by substituting the value of a1∗, we get

r1(a1 +m2a2 + ...+mqaq) + r2a2 + ...+ rqaq = 0.

=⇒ r1a1 + (r1m2 + r2)a2 + ...+ (r1mq + rq)aq = 0.

That is, we get a relation between a1, a2, ..., aq in which the coefficient of a1 is r1.

Thus, s1|r1, and hence r1a1∗ = 0, (by (2.4)).

If M1 is the cyclic module generated by a1∗ and if M2 is the submodule of M

generated by a2, a3, ..., aq, then from the above discussion one can observe that

r1a1 ∗+(r2a2 + r3a3 + ...+ rqaq) = 0 =⇒ r1a1∗ = r2a2 + r3a3 + ...+ rqaq = 0.

This shows that M1 ∩M2 = {0}.

But M1 +M2 = M because a1∗, a2, ..., aq generate M .

=⇒ M is the direct sum of M1 and M2.

Since M2 is generated by a2, a3, ..., aq, its rank is q − 1, and hence by the induction

hypothesis, M2 is the direct sum of cyclic modules.

Putting all these together, we get M is the direct sum of cyclic modules.

Hence by induction, the theorem is proved when the Euclidean ring R is the ring of

integers.

Now, suppose that R is a general Euclidean ring with Euclidean function d. Then the

above proof for the ring of integers can be modified to R as follows:

1. Instead of choosing s1 as the smallest positive integer occurring in any relation

among elements of a generating set, we can choose it as an element of R occur-

ring in any relation whose d− value is minimal.

2. In the proof of s1 | r1 for any relation r1a1+ ...+rqaq = 0, the only change needed

is that r1 = ms1 + t where either t = 0 or d(t) < d(s1). Similarly for the proof of

s1 | si.
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Hence the proof holds for any general Euclidean ring.

Corollary 2.4.12. Any finite abelian group is the direct product (sum) of cyclic groups.

Proof. Since any finite abelian group is a finitely generated module, the corollary fol-

lows from the previous theorem.

Let Us Sum Up

In this section, we studied the

1. definitions of module

2. direct sum of modules

3. cyclic module

4. finitely generated module

5. fundamental theorem on finitely generated modules over Euclidean rings.

Check your Progress

1. A module is a generalization of which of the following structures?

(a) Vector space (b) Group (c) Ring (d) Field

2. Which of the following is not a requirement for a structure to be a module over

a ring R?

(a) Closed under addition

(b) Closed under scalar multiplication

(c) Commutative scalar multiplication

(d) Distributive property

Unit Summary

In this unit, ideas about solvable groups, the structure of finite abelian groups, in-

ternal and external direct products of groups, and the basics of modules were covered.
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Glossary

• G′ or G(1) - The commutator subgroup of a group G

• G(n) - The nth commutator subgroup of the group G

• G = G1 ×G2 × · · · ×Gn - G is the external direct product of G1, G2, . . . , Gn

• G = N1N2 . . . Nn - G is the internal direct product of N1, N2, . . . , Nn

Self Assessment Questions

1. Prove that S4 is a solvable group.

2. If A and B are groups, prove that A×B is isomorphic to B × A.

3. Show how to get all abelian groups of order 23.34.5.

4. Prove that every abelian group is a module over the ring of inegers.

Exercises

1. Prove that a subgroup of a solvable group is solvable.

2. Let A, B be cyclic groups of order m and n, respectively. Prove that A × B is

cyclic if and only if m and n are relatively prime.

3. If G is a finite group, prove that G is nilpotent if and only if G is the direct

product of its Sylow subgroups.

4. If A andB are submodules ofM , then prove that A∩B and A+B are submodules

of M .

Answers for Check your Progress

Section 2.1 1. (b) 2. (a)

Section 2.2 1. (b) 2. (b)

Section 2.3 1. (b) 2. (d)

Section 2.4 1. (a) 2. (c)
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Unit 3

Triangular form

Objectives

After reading this unit, learners will be able to

1. know the fundamental concepts of linear transformations

2. examine the triangularizable of linear transformation

3. study the nilpotent transformations and its properties.

3.1 Basics of Linear Transformation

Definition 3.1.1. A nonempty set V is said to be vector space over field F if

(i) (V,+) is a abelin group.

(ii) α · (v1 + v2) = α · v1 + α · v2
(iii) (α + β) · v = α · v + β · v

(iv) α(β · v) = (αβ) · v

(v) 1.v = v for all v ∈ V.

Example 3.1.2. 1. Every field is a vector space over itself

2. Every field is a vector space over its subfield

3. If F is a field, then F [x] is a vector space over F

4. If F is a fiel, then Mn×m(F ) is a vector space over a field F

5. C[0, 1] is a vector space over R
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6. Let Vn = {f(x) ∈ F [x] : deg(f(x)) ≤ n}. Then Vn is vector space over a field F .

Definition 3.1.3. Let V be vector space over F . A subset B of V is a basis for V over F

if B span V and B is linearly independent.

Example 3.1.4. 1. If F is a vector space over itself, then {1} is a basis for F over F

2. If F [x] is a vector space over F , then {1, x, x2, . . .} is a basis for F [x] over F

3. If Mn×m(F ) is a vector space over a field F , then

B = {Eij : ijth entry is 1 other entries are 0} is a basis for Mn×m(F ).

4. Let Vn = {f(x) ∈ F [x] : deg(f(x)) ≤ n} be a vector space over F . Then {1, x, x2, x3, . . . , xn}

is a basis for Vn over F .

Definition 3.1.5. Let V and W be vector space over the same field F . A function T :

V → W is a linear transformtion if

T (αu+ v) = αT (u) + T (v)

for all α ∈ F and u, v ∈ V .

Example 3.1.6. Define O : V → W by O(v) = 0w for all v ∈ V . Then O(αu+ v) = 0w =

αO(u) +O(v) and so O is Zero transformation

Example 3.1.7. Define D : F [x] → F [x] by D(f(x)) = f ′(x) for all f(x) ∈ F [x]. Then

D(αf(x) + g(x)) = (αf(x) + g(x))′ = αf ′(x) + g′(x) = αD(f(x)) +D(g(x)) and so D is

linear transformation.

Definition 3.1.8. Let T ∈ A(V ). A subspace W of V is invariant under T if T (W ) ⊆ W .

Clearly (0) and V are invariant subspace under T .

Example 3.1.9. Let T ∈ A(V ). Then T (V ) is invariant subspace of V under T and

Ker(T ) is subspace of V under T .

Definition 3.1.10. Let F be a field and p(x) ∈ F [x]. Then p(x) is the minimal polynomial

for T ∈ A(V ) if p(x) is monic, p(T ) = 0 and g(T ) 6= 0 for all g(x) ∈ F [x].

Example 3.1.11. Let I : V → V by I(v) = v for all v ∈ V . Then the minimal polynomial

for I is (x− 1)n.
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Example 3.1.12. Let O : V → W by O(v) = OW for all v ∈ V . Then the minimal

polynomial for O is x.

Example 3.1.13. Define D : Vn → Vn by D(f(x)) = f ′(x) for all f(x) ∈ F [x]. Then the

minimal polynomial for D is xn+1.

Definition 3.1.14. A linear operator T on V is called nilpotent if T n = 0 for some positive

integer n.

Example 3.1.15. Let O : V → W by O(v) = 0W for all v ∈ V . Then O is nilpotent

transformation.

Example 3.1.16. Define T : R2 → R2 by T (x, y) = (0, x). Then T 2(x, y) = T (T (x, y)) =

T (0, x) = T (0, 0) = (0, 0) and hence T is nilpotent transformtion.

Let Us Sum Up

In this section, we studied

1. the definitions of vector space and linear transformations

2. invariant subspace of a vector space under linear transformation

3. minimal polynomial of a linear transformation

Check your Progress

1. Which of the following is not a linear transformation?

(a) T (x, y) = (x+ y, 2x− y) (b) T (x, y) = (0, 0)

(c) T (x, y) = (x2, y2) (d) T (x, y) = (3x,−2y)

2. Which of the following statements is true about the minimal polynomial of a

linear transformation?

(a) The minimal polynomial divides the characteristic polynomial

(b) The minimal polynomial equals the characteristic polynomial

(c) The minimal polynomial does not equal the characteristic polynomial

(d) The minimal polynomial does not divide the characteristic polynomial
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3.2 Triangular Form

Definition 3.2.1. The linear transformations S, T ∈ A(V ) are said to be similar if there

exists an invertible element C ∈ A(V ) such that T = CSC−1.

Definition 3.2.2. The subspace W of V is invariant under T ∈ A(V ) if WT ⊂ W .

Lemma 3.2.3. If W ⊂ V is invariant under T , then T induces a linear transformation

T̄ on a vector space V/W , defined by (v + W )T̄ = vT + W . If T satisfies the polynomial

q(x) ∈ F [x], then so does T̄ . If p1(x) is the minimal polynomial for T̄ over F and if p(x)

is that for T , then p1(x)|p(x).

Proof. Let V̄ = V |W = {u+W : u ∈ V }.

Given v̄ = v +W ∈ V̄ define T̄ : V/W → V/W by v̄T̄ = vT +W .

Then (α(v̄)+ū)T̄ = (αv+u)T+W = α(vT )+uT+W = α(vT+W )+uT+W = αv̄T̄+ūT̄

and hence T is a linear operator on V/W .

Suppose that v̄ = v1 +W = v2 +W where v1, v2 ∈ V .

We must show that v1T +W = v2T +W .

Since v1 + W = v2 + W , v1 − v2 must be in W , and since W is invariant under T ,

(v1 − v2)T must also be in W .

Consequently v1T − v2T ∈ W , from which it follows that v1T + W = v2T + W , as

desired.

We now know that T̄ defines a linear transformation on V̄ = V |W .

If v̄ = v+W ∈ V̄ , then v̄(T̄ 2) = vT 2+W = (vT )T+w = (vT+W )T̄ = ((v+W )T̄ )T̄ =

v̄(T̄ )2 ; thus (T̄ 2) = (T̄ )2.

Similarly, (T̄ k) = (T̄ )k for any k ≥ 0.

Consequently, for any polynomial q(x) ∈ F [x], ¯q(T ) = q(T̄ ).

For any q(x) ∈ F [x] with q(T ) = 0, since 0̄ is the zero transformation on V̄ , 0 = ¯q(T ) =

q(T̄ ).

Let p1(x) be the minimal polynomial over F satisfied by T̄ .

If q(T ) = 0 for q(x) ∈ F [x], then Pi(x)Iq(x).

If p(x) is the minimal polynomial for T over F , then p(T ) = 0, whence p(T ) = 0; in

consequence, p1(x)|p(x).
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Note 3.2.4. All the characteristic roots of T̄ which lie in F are roots of the minimal

polynomial of T over F . We say that all the characteristic roots of T are in F if all the

roots of the minimal polynomial of T over F lie in F .

We defined a matrix as being triangular if all its entries above the main diagonal

were 0. Equivalently, if T is a linear transformation on V over F , the matrix of T in

the basis v1, . . . , vn is triangular if

v1T = α1,1v1

v2T = α2,1v1 + α2,2v2

. . .

vnT = αn,1v1 + · · ·+ αm,nvn.

Theorem 3.2.5. If T ∈ A(V ) has all its characteristic roots in F , then there is a basis of

V in which the matrix of T is triangular

Proof. The proof by induction on the dimension of V over F .

If dimF (V ) = 1, then every element in A(V ) is a scalar, and so the theorem is true

here.

Suppose that the theorem is true for all vector spaces over F of dimension n− 1, and

let V be of dimension n over F .

Note that the linear transformation T on V has all its characteristic roots in F .

Let λi ∈ F be a characteristic root of T .

Then there exists a nonzero vector v1 in V such that v1T = λ1v1.

Let W = {αv1 : α ∈ F}; W is a one-dimensional subspace of V , and is invariant under

T .

Let V̄ = V/W . Then dimV̄ = dimV − dimW = n− 1.

By Lemma 3.2.3, T induces a linear transformation T̄ on V̄ whose minimal polynomial

over F divides the minimal polynomial of T over F .

Thus all the roots of the minimal polynomial of T̄ , being roots of the minimal polyno-

mial of T , must lie in F .

Hence the linear transformation T̄ in its action on V satisfies the hypothesis of the

theorem; since V̄ is (n− 1)-dimensional over F , by our induction hypothesis, there is

a basis v̄2, v̄3, . . . , v̄n of V̄ over F such that v̄1T̄ = α1,1v̄1
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v̄2T̄ = α2,1v̄1 + α2,2v̄2

. . .

v̄nT̄ = αn,1v̄1 + · · ·+ αm,nv̄n

Let v2, . . . , vn be elements of V mapping into v̄2, v̄3, . . . , v̄n of V̄ respectively.

Then v1, . . . , vn form a basis of V .

Since v̄2T̄ = α2,2v̄2, v̄2T̄ = α2,2v̄2 = 0, whence v2T − α2,2v2 must be in W .

Thus v2T − α2,2v2 is a multiple of v1, say α2,1v1, yielding, after transposing, v2T =

α2,1v1 + α2,2v2.

Similarly, viT − αi,2v2 − αi,3v3 − · · · − αi,ivi ∈ W , whence viT = αi,1v1 + αi,2v2 +

αi,3v3 + · · ·+ αi,ivi.

The basis v1, . . . , vn of V over F provides us with a basis where every viT is a linear

combination of vi and its predecessors in the basis.

Therefore, the matrix of T in this basis is triangular.

Theorem 3.2.6. If V is n-dimensional over F and if T ∈ A(V ) has all its characteristic

roots in F , then T satisfies a polynomial of degree n over F .

Proof. By Theorem 3.2.5, we can find a basis v1, . . . , vn of V over F such that: v1T =

λ1v1, v2T = α2,1v1 + λ2v2, . . . , viT = αi,1v1 + · · ·+ αi,i−1vi−1 + λivi, for i = 1, 2, . . . , n.

Equivalently v1(T−λ1) = 0, v2(T−λ2) = α2,1v1, . . . , vi(T−At) = αi,1v1+· · ·+αi,i−1vi−1,

for i = 1, 2, . . . , n.

As a result of v2(T −λ2) = α2,1v1 and v1(T −λ1) = 0, we obtain v2(T −λ2)(T −λ1) = 0.

Since (T − λ2)(T − λ1) = (T − λ1)(T − λ2),

v1(T − λ2)(T − λ1) = v1(T − λ1)(T − λ2) = 0.

Continuing this type of computation yields

v1(T − λi)(T − λi−1) . . . (T − λ1) = 0,

v2(T − λi)(T − λi−1) . . . (T − λ1) = 0,

. . .

vi(T − λi)(T − λi−1) . . . (T − λ1) = 0.

For i = n, the matrix S = (T − λn)(T − λn−1) · · · (T − λ1) satisfies v1S = v2 = · · · =

vn = 0.
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Then, since S annihilates a basis of V , S must annihilate all of V .

Therefore, S = 0.

Consequently, T satisfies the polynomial (x− λ1)(x− λ2) . . . (x− λn) in F [x] of degree

n.

Let Us Sum Up

In this section, we studied the

1. similar linear transformation

2. triangular linear transformation.

Check your Progress

1. Which of the following matrices is always upper triangular?

(a) The identity matrix (b) A symmetric matrix

(c) A diagonal matrix (d) A skew - symmetric matrix

2. Which of the following is true about the determinant of a triangular matrix?

(a) It is the product of the diagonal elements

(b) It is the sum of the diagonal elements

(c) It is the same as the trace of the matrix

(d) It is always 1.

3.3 Nilpotent Transformations

Definition 3.3.1. Let V be a vector space over F and T ∈ A(V ). If Tm = 0 for some m,

then T is nilpotent linear transformation on V .

Lemma 3.3.2. All characteristic roots of the nilpotent linear transformation are zero.

Proof. Let T be a nilpotent linear transformation of nilpotent index m.

Then Tm = 0.

Let α be a characteristic root of T .

Then there exist u 6= 0 in B such that uT = αu.

Since uT = αu, uT 2 = α(uT ) = ααu = α2u.
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From this, we get uT ` = α`.

Since Tm = 0, uTm = αmu = 0.

Since u 6= 0, αm = 0 and hence α = 0.

Lemma 3.3.3. If V = V1⊕V2⊕· · ·⊕Vk, where each subspace Vi is of dimension ni and is

invariant under T , an element of A(V ), then a basis of V can be found so that the matrix

of T in this basis is of the form 
A1 0 . . . 0
0 A2 . . . 0
...

... . . .
...

0 0 . . . Ak


where each Ai is an ni × ni matrix and is the matrix of the linear transformation

induced by T on Vi.

Proof. Choose a basis of V as follows: v(1)1 , . . . , v
(1)
n is a basis of V1 ,v(2)1 , . . . , v

(2)
n is a

basis of V2, and so on.

Since each Vi is invariant under T , v(i)j T ∈ Vi so is a linear combination of v(i)1 , v
(i)
2 , . . . , v

(i)
n ,

and of only these.

Thus the matrix of T in the basis so chosen is of the desired form.

That each Ai is the matrix of Ti, the linear transformation induced on Vi by T , is clear

from the very definition of the matrix of a linear transformation.

Definition 3.3.4. If T ∈ A(V ) is nilpotent, then k is called the index of nilpotence of T if

T k = 0 but T k−1 6= 0.

In a ring, sum of unit element and nilpotent element is unit.

Lemma 3.3.5. If T ∈ A(V ) is nilpotent, then α0 +α1T + · · ·+αmT
m is invertible, where

αi ∈ F , if α0 6= 0.

Proof. Since T is nilpotent, T r = 0 for some r. Let S = α1T+ = α2T
2 + · · · + αmT

m.

Then Sr is the linear combination of T r, . . . , T rm. Since T r = 0, Sr = 0. Since A(V ) is

ring and α0 6= 0, α0I is unit and so α0I + S = α0 + S is unit.

Notation: Mt will denote the t × t matrix all of whose entries are 0 except on the

superdiagonal, where they are all 1′s.
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Mt =


0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0


Theorem 3.3.6. If T ∈ A(V ) is nilpotent, of index of nilpotence n1, then a basis of V can

be found such that the matrix of T in this basis has the form


Mn1 0 . . . 0

0 Mn2 . . . 0
...

... . . .
...

0 0 . . . Mnr


where n1 ≥ n2 ≥ · · · ≥ nr, and where n1 + n2 + · · ·+ nr = dimFV .

Proof. The proof will be a little detailed, so as we proceed we shall separate parts of it

out as lemmas.

Since T n1 = 0 but T n1−1 6= 0.

Claim 1: We can find a vector v ∈ V such that vT n1−1 6= 0.

We claim that the vectors v, vT, . . . , vT n1−1 are linearly independent over F .

For, suppose that α1v + α2vT + · · ·+ αn1v
n1−1 = 0 where the αi ∈ F ; let αs be the first

nonzero α, hence

vT s−1(αs + αs+1T + · · ·+ αn1T
n1−s) = 0

Since αs 6= 0, by Lemma 3.3.5, αs+αs+1T+· · ·+αn1T
n1−s is invertible, and therefore

vT s−1 = 0.

However, s < n1, thus this contradicts that vT n1−1 6= 0.

Thus no such nonzero αs exists and v, vT, . . . , vT n1−1 have been shown to be linearly

independent over F .

Let V1 be the subspace of V spanned by v1 = v, v2 = vT, . . . , vn1 = vT n1−1; V1 is

invariant under T , and, in the basis above, the linear transformation induced by T on

V1 has as matrix Mn1.

Claim 2: If u ∈ V1 is such that uT n1−k = 0, where 0 < k ≤ n1, then u = u0T
k for some

u0 ∈ V1.

Since u ∈ V1, u = α1v + α2vT + · · ·+ αkvT
k−1 + ak+1vT

k + · · ·+ αn1vT
n1−1.

Thus 0 = uT n1−k = α1vT
n1−1 + ∆∆∆ + αkvT

n1−1.
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However, vT n1−k, . . . , vT n1−1 are linearly independent over F , whence α1 = α2 =

· · · = αk = 0, and so, u = αk+1vT
k + · · ·+ αn1vT

n1−1 = u0T
k where Uo = αk+lv + · · ·+

αn1vT
n1−k−1 ∈ V1.

Claim 3: There exists a subspace W of V , invariant under T , such that V = V1
⊕

W .

Let W be a subspace of V , of largest possible dimension, such that

1. Vl ∩W = (0);

2. W is invariant under T

We want to show that V = V1 +W .

Suppose not; then there exists an element z ∈ V such that z /∈ V1 +W .

Since T n1 = 0, there exists an integer k, 0 < k ≤ n1, such that zT k ∈ V1 +W and such

that zT i /∈ V1 +W for i < k.

Thus zT k = u+ w, where u ∈ Vl and where w ∈ W .

But then 0 = zT n1 = (zT k)T n1−k = uT n1−k + wT n1−k; however, since both V1 and W

are invariant under T , uT n1−k ∈ Vl and wT n1−k ∈ W .

Now, since V1 ∩W = (0), this leads to uT n1−k = −wT n1−k ∈ Vl ∩W = (0), resulting in

uT n1−k = 0.

By Claim 2, u = u0T
k for some u0 ∈ V1; therefore, zT k = u+ w = u0T

k + w.

Let z1 = z − u0 ; then z1T k = zT k − u0T k = w ∈ W , and since W is invariant under T

this yields z1Tm ∈ W for all m ≥ k.

On the other hand, if i < k, Z1T
i = zT i − UoT iv1 + w, for otherwise zT i must fall in

V1 +W , contradicting the choice of k.

Let W1 be the subspace of V spanned by W and Z1, Z1T, . . . , Z1T
k−1.

Since z1 /∈ W , and since Wl ⊃ W , the dimension of W1 must be larger than that of W .

Moreover, since z1T k ∈ W and since W is invariant under T , W1 must be invariant

under T .

By the maximal nature of W , there must be an element of the form w0+α1Z1+α2z1T+

· · ·+ αkz1T
k−1 6= 0 in W1 ∩ V1 where wo ∈ W .

Not all of αl, . . . , αk can be 0; otherwise we would have 0 6= wo ∈ W ∪ V1 = (0) a

contradiction.

Let αs be the first nonzero α; then w0 + z1T
s−1(αs + αs+1T + · · ·+ αkT

k−s) ∈ V1.
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Since αs 6= 0, by Lemma 3.2.5 , αs + αs+lT + · · ·+ αkT
k−s is invertible and its inverse,

R, is a polynomial in T .

Thus W and V1 are invariant under R; however, from the above, woR+z1T
s−l ∈ V1R ⊂

V1, forcing z1T s−1 ∈ V1 +WR ⊂ V1 +W .

Since s− 1 < k this is impossible; therefore V1 +W = V .

Because V1 ∩W = (0), V = V1
⊕

W .

By Claim 3, V = V1 +W , where W is invariant under R.

Using the basis v1, . . . , vn1 of V1 and any basis ov W as a basis of V .

By Lemma 3.2.3, the matrix of T in this basis has the form[
Mn1 0

0 A2

]
,

where A2 is the matrix of T2, the linear transformation induced on W by T .

Since T n1 = 0, T n2
2 = 0 for some n2 ≤ n1.

Repeating the argument used for T on V for T2 on W we can decompose W .

Continuing this way, we get a basis of V in which the matrix of T is of the form


Mn1 0 . . . 0

0 Mn2 . . . 0
...

... . . .
...

0 0 . . . Mnr

 .
From this, we get n1 + n2 + · · ·+ nr = dimFV .

Definition 3.3.7. The integers n1, n2, . . . , nr are called the invariants of T .

Definition 3.3.8. If T ∈ A(V ) is nilpotent, the subspace M of V , of dimension m, which

is invariant under T , is called cyclic with respect to T if

1. MTm = (0), MTm−1 6= (0);

2. there is an element z ∈M such that z, zT, . . . , zTm−1 form a basis of M

Lemma 3.3.9. lf M , of dimension m, is cyclic with respect to T , then the dimension of

MT k is m− k for all k ≤ m.

Proof. A basis of MT k is provided us by taking the image of any basis of M under T k.

Using the basis z, zT, . . . , zTm−1 of M leads to a basis zT k,zT k+1, . . . , zTm−1 of MT k.

Since this basis has m− k elements, the dimension of MT k is m− k.
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Lemma 3.3.10. lf T is nilpotent operator on V , then the invaiant of T are unique.

Proof. Let if possible there are two sets of invariants n1, n2, . . . , nr and m1,m2, . . . ,ms

of T .

Then V = V1 ⊕ · · · ⊕ Vr and V = U1 ⊕ · · · ⊕ Us, where Vi and Ui are cyclic subspace of

V of dimension ni and mi, respectively.

Now we show that r = s and ni = mi.

Suppose that k be the first integer such that nk 6= mk.

Then ni = mi for i < k. Without loss of generality, nk > mk.

Consider

Tmk(V ) = Tmk(V1)⊕ · · · ⊕ Tmk(Vr)

and

dimTmk(V ) = dimTmk(V1)⊕ · · · ⊕ dimTmk(Vr).

By the above Lemma, dimTmk(Vi) = ni − mk. Therefore dimTmk(V ) > (n1 − mk) +

· · ·+ (nk−1 − nk).

Simillarly,

dimTmk(V ) = dimTmk(U1)⊕ · · · ⊕ dimTmk(Us).

As mj ≤ mk for j > k, we have Tmk(Uj) = {0}.

Therefore, dimTmk(Uj) = 0 for j > k. Hence,

dimTmk(V ) = (m1 −mk) + · · ·+ (mk−1 − nk)

. By assumption,

dimTmk(V ) = (n1 −mk) + · · ·+ (nk−1 − nk),

a contradiction.

Hence ni = mi.

Since dimV =
r∑
i=1

ni =
s∑
j=1

mj, r = s.

Theorem 3.3.11. Two nilpotent linear transformations are similar if and only if they

have the same invariants.

Proof. Suppose S and T are similar.

Then there exist a regular mapping A such that A−1TA = S. Let n1, n2, . . . , nr be
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invariants of S and m1,m2, . . . ,ms be invariants of T .

Then V = V1⊕· · ·⊕Vr and V = U1⊕· · ·⊕Us, where Vi and Uj are cyclic and invariant

subspaces of V of dimension ni and mj, respectively.

As S(Vi) ⊂ Vi, (A−1TA)(Vi) ⊂ Vi implies (A−1T )A(Vi) ⊂ Vi.

Put A(Vi) = Ui, (since A is regular).

Thus, dimVi = dimUi = ni.

Further T (Ui) = TA(Vi) = AS(Vi).

As S(Vi) ⊂ Vi, therefore T (Ui) ⊂ Ui.

Equivalently, we have to show that Ui is invariant under T . Moreover,

V = A(V ) = A(V1)⊕ · · · ⊕ A(Vr) = U1 ⊕ · · · ⊕ Us.

By the above theorem, the invariants of nilpotent transformations are unique.

Therefore ni = mi and r = s.

Conversely, suppose that two nilpotent transformations S and T have same invariants.

Then there exists two bases say, {v1, v2, . . . , vn} and {u1, u2, , un} of V such that the

matrix of S under {v1, v2, . . . , vn} is equal to the matrix of T under {u1, u2, . . . , un}. Let

it be

m(S) = m(T ) =

 Mn1 . . . 0
... . . .

...
0 . . . Mnr


where m(S) = [aij] and m(T ) = [bij] Define a linear transformation A : V → V by

A(vi) = ui.

Then A−1TA(vi) = A−1T (u− i) = A−1(
n∑
j=1

aijuj) =
n∑
j=1

aijA
−1(uj) =

n∑
j=1

aijvj = S(vi).

Hence A−1TA = S and so S and T are similar.

Let Us Sum Up

In this section, we studied the nilpotent transformation and its properties.

Check your Progress

1. If T is a nilpotent linear transformation on a vector space V , which of the fol-

lowing is true?

(a) T 2 = T (b) T is invertible

(c) All eigen values of T are zero (d) T k 6= 0 for some k.
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2. If T is a nilpotent transformation on an n− dimensional vector space V , what is

the maximum possible value of k such that T k = 0?

(a) 1 (b) 2 (c) n (d) n− 1

Unit Summary

This unit discussed the basic ideas of linear transformation. We investigated the

triangularizability of linear transformations. We additionally studied the nilpotent

linear transformation and its properties.

Glossary

• A(V ) − Set of all linear transformations on V .

• F [x] = {α0 + α1x+ ...+ αnx
n + ...|αi ∈ F, i = 1, 2, ...n, ..}.

• V ⊕W − direct sum of V and W

Self Assessment Questions

1. Prove that the relation of similarity is an equivalence relation in A(V ).

2. IfM is a commutative set of elements in A(V ) such that every M ∈M has all its

characteristic roots in F , prove that there is a C ∈ A(V ) such that every CMC−1,

for M ∈M, is in triangular form.

3. If S and T are nilpotent linear transformations which commute, prove that ST

and S + T are nilpotent linear transformations.

Exercises

1. If T ∈ Fn has minimal polynomial p(x) over F , prove that every root of p(x), in

its splitting field K, is a characteristic root of T .

2. If T ∈ A(V ) has only 0 as a characteristic root, prove that T is nilpotent.

Answers for Check your Progress

Section 3.1 1. (c) 2. (a)

Section 3.2 1. (c) 2. (a)
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Unit 4

The Rational and Jordan forms

Objectives

After reading this unit, learners will be able to

1. decompose the vector space into Jordan form

2. study the rational canonical form.

4.1 Jordan form

Let V be a finite-dimensional vector space over F and let T be an arbitrary element in

AF (V ).

Suppose that V1 is a subspace of V invariant under T .

Therefore T induces a linear transformation T1 on V1 defined by uT1 = uT for every

u ∈ V1.

Given any polynomial q(x) ∈ F [x], we claim that the linear transformation induced by

q(T ) on V1 is precisely q(T1).

In particular, if q(T ) = 0 then q(T1) = 0. Thus T1 satisfies any polynomial satisfied by

T over F .

Lemma 4.1.1. Suppose that V = V1 ⊕ V2 where V1 and V2 are subspaces of V invariant

under T. Let T1 and T2 are the linear transformations induced by T on V1 and V2 respec-

tively. If the minimal polynomial of T1 over F is p1(x) while that of T2 is p2(x), then the

minimal polynomial for T over F is the l.c.m{p1(x), p2(x)}.
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Proof. Let q(x) be the l.c.m{p1(x), p2(x)} and let p(x) be the minimal polynomial of T.

Since p(x) is the minimal polynomial of T .

Then p(T ) = 0⇒ p(T1) = 0 and p(T2) = 0.

Since p1(x) and p2(x) are the minimal polynomial of T1 and T2 respectively, p1(x)|p(x)

and p2(x)|p(x).

From this we get p(x) is one among all the multiples of p1(x) and p2(x) and so q(x)|p(x).

On the other hand, if q(x) is the least common multiple of p1(x) and p2(x), consider

q(T ).

For v1 ∈ V1, since p1(x)|q(x), v1q(T ) = v1q(T1) = 0; similarly, for v2 ∈ V2, v2q(T ) = 0.

Given any v ∈ V, v can be written as v = v1 + v2, where vi ∈ Vi, in consequence of

which vq(T ) = (v1 + v2)q(T ) = v1q(T ) + v2q(T ) = 0.

Thus q(T ) = 0 and T satisfies q(x).

Since p(x) is minimal polynomial for T , p(x)|q(x).

Corollary 4.1.2. If V = V1 ⊕ · · · ⊕ Vk where each Vi is invariant under T and if pi(x) is

the minimal polynomial over F of Ti the linear transformation induced by T on Vi, then

the minimal polynomial over F is the l.c.m{p1(x), . . . , pk(x)}.

Lemma 4.1.3. Any polynomial in F [x] can be written in a unique manner as a product

of irreducible polynomials in F [x].

Lemma 4.1.4. Given two polynomials f(x), g(x) ∈ F [x], they have g.c.d d(x) which can

be realized as d(x) = λ(x)f(x) + µ(x)g(x).

Lemma 4.1.5 (Integers). If a and b are integers, not both 0 then we can find integers m0

and n0 such that (a, b) = m0a+ n0b.

Theorem 4.1.6. Prove that for each i = 1, . . . , k, Vi 6= 0 and V = V1 ⊕ · · · ⊕ Vk. The

minimal polynomial of Ti is (qi(x))li , where qi is irreducible and li is an integer.

Proof. Let T ∈ AF (V ) and p(x) be the minimal polynomial over F.

By Lemma 4.1.3, p(x) ∈ F [x] is factorized in a unique way i.e, p(x) = q1(x)l1q2(x)l2 . . . qk(x)lk

where qi are distinct irreducible polynomial in F [x] where l1, . . . , lk are positive inte-

gers.

Let Vi = {v ∈ V : vqi(T )li = 0} for i = 1, 2, . . . , k. Then each Vi is a subspace of V.
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Claim 1: Vi is invariant under T

Let u ∈ Vi. It is enough to prove (uT )(qi(T ))li = 0.

Now (uT )(qi(T ))li = (uqi(T )li)T = 0T = 0 and so uT ∈ Vi.

Hence each Vi is invariant under T .

If k = 1, there is nothing to prove, assume that k > 1.

Claim 2: Vi 6= (0)

Let hi(x) = p(x)

qi(x)li
for i = 1, 2, . . . , k.

Then clearly qi(x)lihi(x) = p(x), for i = 1, 2, . . . , k.

Moreover hi(x) 6= p(x) and hi(T ) 6= 0. Then for any given i, there is a w ∈ V such that

w = vhi(T ) 6= 0.

But wqi(T )li = v[hi(T )qi(T )li] = vp(T ) = 0 and so w ∈ Vi.

Therefore, Vi 6= (0).

Moreover V hi(T ) 6= 0 and V hi(T ) ⊆ Vi.

Claim 3: V = V1 + V2 + · · ·+ Vk

Suppose vi ∈ Vj for j 6= i..

Then qj(x)lj |hi(x) =⇒ hi(x) = qj(x)ljf(x) for some f(x).

Now vjhi(T ) = [vjqj(T )lj ]f(T ) = 0 for all j 6= i.

Clearly, the polynomial h1(x), h2(x) . . . , hk(x) are relatively prime.

By Lemma 4.1.4, we can find polynomials a1(x), . . . , ak(x) in F [x] such that a1(x)h1(x)+

· · ·+ ak(x)hk(x) = 1 implies a1(T )h1(T ) + · · ·+ ak(T )hk(T ) = I.

For any v ∈ V, v = vI = v[a1(T )h1(T ) + · · · + ak(T )hk(T )] = va1(T )h1(T ) + · · · +

vak(T )hk(T ).

Now, each vai(T )hi(T ) is in V hi(T ), implies V hi(T ) ⊂ Vi.

From this, we get v = v1 + · · · + vk, where vi = vai(T )hi(T ) and hence V = V1 + V2 +

· · ·+ Vk

Claim 4: If u1 + · · ·+ uk = 0, then u1 = u2 = · · · = uk = 0 where each ui ∈ Vi
Suppose not for some i, ui 6= 0.

Without loss of generality, we may assume that u1 6= 0.

Since u1 + u2 + · · · + uk = 0, u1h1(T ) + u2h1(T ) + · · · + ukh1(T ) = 0 =⇒ ujh1(T ) = 0

for all j 6= 1.

Since u)j ∈ Vj, u1h1(T ) = 0.
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This implies that u1q1(T )l1 = 0.

Since h1(x) and q1(x)l1 are relatively prime, u1 = u1I = u1[b1(T )h1(T )+b2(T )q1(T )l1 ] =

u1h1(T )b1(T ) + u1q1(T )l1b2(T ) = 0, a contradiction.

Claim 5: Minimal polynomial of Ti on Vi is q(x)li.

By the definition of Vi, Viqi(T )li = 0⇒ qi(T )li = 0.

This implies the minimal polynomial for Ti must be a divisor of qi(x)li and so the min-

imal polynomial of T is qi(x)fi where fi ≤ li.

By Lemma ??, the minimal polynomial of T is the l.c.m {q1(x)f1 , . . . , qk(x)fk} = q1(x)f1 · · · qk(x)fk .

Since this is the minimal polynomial each fi ≥ li, fi = li.

If all the characteristic roots of T should happen to lie in F , then the minimal

polynomial of T takes on the especially nice form q(x) = (x−λ1)`1 · · · (x−λk)`k , where

λ1, . . . , λk are the distinct characteristic roots of T .

The irreducible factors q(x) above are merely qi(x) = x − λi. Note that on Vi, Ti only

has λi as a characteristic root.

Corollary 4.1.7. If all the distinct characteristic roots λ1, λ2, . . . , λk of T lie in F then V

can be written as V = V1 ⊕ V2 · · · ⊕ Vk where Vi = {vi ∈ V : V (T − λi)li = 0} and Ti has

only one characteristic root λi ∈ Vi

Definition 4.1.8. The matrix 

λ 1 0 . . . 0
0 λ 1 . . . 0
0 0 λ . . . 0
...
0 0 0 . . . 1
0 0 0 . . . λ


where λi’s are on diagonal, 1’s on the super diagnal and 0’s elsewhere is a Jordan block

belonging to λ.

Remark 4.1.9. Two linear transformationAF (V ) which have all their characteristic roots

in F are similar iff can be bought to the same Jordan form.
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Theorem 4.1.10. Let T ∈ Ak(V ) have all its distinct characteristic roots λ1, λ2, · · · , λk
in F . Then a basis of V can be found in which the matrix of T is of the form

J1 0 · · · · · · 0
0 J2 · · · · · · 0
...
0 · · · · · · · · · Jk


where each

Ji =


Bi1 · · · · · · · · ·
· · · Bi2 · · · · · ·
. . .
· · · · · · · · · Bir


where Bi1, · · · , Bir are basic Jordan block belongs to λi.

Proof. Consider the case that T has only one characteristic root λ.

Then by above corollary, V = {v ∈ V : T (T − λ)l = 0}.

T − λ is nilpotent.

Now T = λ+ T − λ.

Since T − λ is nilpotent, there is a basis in which its matrix is of the form
Mn1 · · · · · ·
· · · Mn2 · · ·
...
· · · · · · Mnr

 .

Then the matrix of

T =

 λ · · · · · ·
...
· · · · · · λ

+

Mn1 · · · · · ·
...
· · · · · · Mnr

 =

Bn1 · · · · · ·
...
· · · · · · Bnr

 .

Hence the theorem is proved.

Let Us Sum Up

In this section, we studied how to decompose the vector space into Jordan form.
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Check Your Progress

1. A Jordan block for an eigenvalue λ has which of the following properties?

(a) λ on the diagonal, 1′s below the diagonal

(b) λ on the diagonal, 1′s above the diagonal

(c) λ on the diagonal, 0′s everywhere else

(d) λ on the diagonal, −1′s below the diagonal.

2. If a matrix has distinct eigenvalues, its Jordan form will be

(a) a triangular matrix (b) a diagonal matrix (c) a full matrix

(d) a block matrix with at least one non-trivial Jordan block

4.2 Rational Canonical form

Let T ∈ AF (V ). For any polynomial f(x) ∈ F [x] and for any v ∈ V , by defining

f(x)v = vf(T ), one can make V as an F [x] module.

Lemma 4.2.1. Suppose that T in AF (V ), has the minimal polynomial over F, the poly-

nomial p(x) = γo + γ1x + · · · + γr−1x
r−1 + xr. Suppose, further, that V , as a module, is

a cyclic module (that is, is cyclic relative to T ). Then there is basis of V over F such that,

in this basis, the matrix of T is
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...
0 0 0 0 · · · 1
−γ0 −γ1 . . · · · −γr−1

 .

Proof. Since V is cyclic relative to T , there exists a vector v in V such that every ele-

ment w, in V, is of the form w = vf(T ) for some f(x) in F [x].

Claim 1.

If vs(T ) = 0, for some polynomial s(x) in F [x], then s(T ) = 0.

From this, vs(T ) = 0 implies for any w ∈ V such that wS(T ) = vf(T )s(T ) =

vs(T )f(T ) = 0.

Therefore S(T ) = 0. Hence the claim 1.

Claim 2

Note that {v, vT, V T 2, · · · , V T r−1} is a basis of V .
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Since p(x) is a minimal polynomial of T, p(x)|s(x).

First we have to prove v, vT, V T 2, · · · , V T r−1 are linearly independent.

Suppose not, α0v + α1vT + α2vT
2 + · · ·αr−1vT r−1 = 0 implies not α′is are zero.

This implies v(α0 + α1T + α2T
2 + · · ·αr−1T r−1) = 0 and so vg(T ) = 0, where g(T ) =

α0 + α1T + α2T
2 + · · ·αr−1T r−1.

Thus g(T ) = 0 (By claim 1) implies T satisfies g(x).

Hence p(x)|g(x) implies p(x)|α0 + α1x+ α2x
2 + · · ·αr−1xr−1.

This is possible only if α0 = α1 = · · ·αr−1 = 0.

Next we will prove the vectors v, vT, V T 2, · · · , V T r−1 span V .

So vT r = γ0v − γ1vT − · · · − γr−1vT r−1 and

m(T ) =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...
0 0 0 0 · · · 1
−γ0 −γ1 . . · · · −γr−1

 .

Definition 4.2.2. If f(x) = γo + γ1x+ · · ·+ γr−1x
r−1 + xr ∈ F [x] then the r × r matrix


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...
0 0 0 0 · · · 1
−γ0 −γ1 . . · · · −γr−1


is called the companion matrix of f(x). We write it as C(f(x)).

Example 4.2.3. Let f(x) = x3 + 3x2 + 4x− 7. Then0 1 0
0 0 1
7 −4 −3

 .

Theorem 4.2.4. If T in AF (V ) has as minimal polynomial p(x) = q(x)e, where q(x) is a

monic, irreducible polynomial in F [x], then a basis of V over F can found in which the

matrix of T is of the form
C(q(x)e)

C(q(x)e2)
. . .

C(q(x)er)
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where e = e1 ≥ e2 ≥ e2 ≥ · · · ≥ er.

Proof. Since V is finitely generated F [x]- module V = V1 ⊕ V2 ⊕ · · · ⊕ Vk, where

Vi = {v ∈ V : v ∈ v(q(T ))ei = 0}.

Since T r = −γ0 − γ1T − · · · − γr−1T
r−1, T r+k, k ≥ 0 is a linear combination of

1, T, T 2, · · · , T r−1.

This implies f(T ) is a linear combination of 1, T, T 2, · · · , T r−1. over F.

Since any w in V is of the form w = vf(T ), w is a linear combination of v, vT, vT 2, · · · , vT r−1.

Let V1 = v, V2 = vT, V3 = vT 2 · · ·Vr = vT r−1.

Thus we have to prove V1T = V T = V2 = 0V1 + 1V2 + · · · + 0Vr and so V2T = V T 2 =

V3 = 0V1 + 0V2 + 1V3 + · · ·+ 0Vr.

Note that each Vi is cyclic sub-module.

Also each Vi is invariant under T and hence induces a linear transformation Ti on Vi.

Since the minimal polynomial of Ti divides the minimal polynomial of T = q(x)e, the

minimal polynomial of Ti is of the form q(x)ei , where ei ≤ e........(1)

By suitably rearranging V ′i s we have e1 ≥ e2 ≥ · · · ≥ ei.

Since Vi is a cyclic submodule relative to Ti, there is a basis of Vi in which m(Ti) =

c(q(x)ei),.

From this, we get

m(T ) =


C(q(x)e)

C(q(x)e2)
. . .

C(q(x)er)

 .

Finally we have to prove e = e1.

For v1 ∈ Vi implies vi[q(T )]ei = 0 for i = 1, · · · , r.

This implies v[q(T )]e1 = 0 implies [q(T )]e1 = 0.

But q(x)e is the minimal polynomial of T . e ≤ e1.....(2).

From (1) and (2), hence e = e1.

Definition 4.2.5. The polynomials q1(x)e11 , q1(x)e12 , ..., q1(x)e1r1 , ..., qk(x)ek1 , ..., qk(x)ekrk

in F [x] are called the elementary divisors of T .

Definition 4.2.6. If dimF (V ) = n, then the characteristic polynomial of T , pT (x), is the

product of its elementary divisors.
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Remark 4.2.7. Every linear transformation T ∈ AF (V ) satisfies its characteristic poly-

nomial. Every characteristic root of T is a root of pT (x).

Proof. We only have to show that T satisfies pT (x), but this becomes almost trivial.

Since pT (x) is the product of q1(x)e11 , q1(x)e12, . . . , qk(x)ek1 , . . ., and since e11 = e1, e21 =

e2, . . . , ek1 = ek, pT (x) is divisible by p(x) = q1(x)e1 · · · qk(x)ek , the minimal polynomial

of T .

Since p(T ) = 0 it follows that pT (T ) = 0.

Theorem 4.2.8. Let V and W be two vector spaces over F and suppose that ψ is a vector

space isomorphism of V onto W . Suppose that S ∈ AF (V ) and T ∈ AF (W ) are such that

for any v ∈ V, (vS)ψ = (vψ)T . Then S and T have the same elementary divisors.

Proof. We begin with a simple computation.

If v ∈ V , then (vS2)ψ = ((vS)S)ψ = ((vS)ψ)T = ((vψ)T )T = (vψ)T 2.

Clearly, if we continue in this pattern, we get (vSm)ψ = (vψ)Tm for any integer m ≥ 0

whence for any polynomial f(x) ∈ F [x] and for any v ∈ V, (vf(S))ψ = (vψ)f(T ).

If f(S) = 0 then (vψ)f(T ) = 0 for any v ∈ V , and since ψ maps V onto W , we would

have that Wf(T ) = (0), in consequence of which f(T ) = 0.

Conversely, if g(x) ∈ F [x] is such that g(T ) = 0, then for any v ∈ V, (vg(S))ψ = 0,

and since ψ is an isomorphism, this results in vg(S) = 0.

This, of course, implies that g(S) = 0.

Thus, S and T satisfy the same set of polynomials in F [x], hence must have the same

minimal polynomial.

p(x) = q1(x)e1q2(x)e2 · · · qk(x)ek

where q1(x), . . . , qk(x) are distinct irreducible polynomials in F [x].

If U is a subspace of V invariant under S, then Uψ is a subspace of W invariant under

T , for (Uψ)T = (US)ψ ⊂ Uψ.

Since U and Uψ are isomorphic, the minimal polynomial of S1, the linear transforma-

tion induced by S on U is the same, by the remarks above, as the minimal polynomial

of T1, the linear transformation induced on Uψ by T .
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Now, since the minimal polynomial for S on V is p(x) = q1(x)e1 · · · qk(x)ek , we

can take as the first elementary divisor of S the polynomial q1(x)e1 and we can find a

subspace of V1 of V which is invariant under S such that

1. V = V1 ⊕M where M is invariant under S.

2. The only elementary divisor of S1, the linear transformation induced on V1 by S,

is q1(x)e1.

3. The other elementary divisors of S are those of the linear transformation S2

induced by S on M .

We now combine the remarks made above and assert

1. W = W1 ⊕N where W1 = V1ψ and N = Mψ are invariant under T .

2. The only elementary divisor of T1, the linear transformation induced by T on W1,

is q1(x)e1 (which is an elementary divisor of T since the minimal polynomial of

T is p(x) = q1(x)e1 · · · qk(x)ek).

3. The other elementary divisors of T are those of the linear transformation T2

induced by T on N .

Since N = Mψ,M and N are isomorphic vector spaces over F under the isomorphism

ψ2 induced by ψ.

Moreover, if u ∈M then (uS2)ψ2 = (uS)ψ = (uψ)T = (uψ2)T2, hence S2 and T2 are in

the same relation vis-à-vis ψ2 as S and T were vis-à-vis ψ. By induction on dimension

(or repeating the argument) S2 and T2 have the same elementary divisors.

But since the elementary divisors of S are merely q1(x)e1 and those of S2 while those of

T are merely q1(x)e1 and those of T2, S, and T must have the same elementary divisors,

thereby proving the theorem.

Theorem 4.2.9. The elements S and T in AF (V ) are similar in AF (V ) if and only if they

have the same elementary divisors.
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Proof. In one direction, this is easy, for suppose that S and T have the same elementary

divisors.

Then there are two bases of V over F such that the matrix of S in the first basis equals

the matrix of T in the second (and each equals the matrix of the rational canonical

form).

But as we have seen several times earlier, this implies that S and T are similar.

For converse part, Without loss of generality, we may suppose that the minimal

polynomial of T is q(x)e where q(x) is irreducible in F [x] of degree d

The rational canonical form tells us that we can decompose V as V = V1 ⊕ · · · ⊕ Vr,

where the subspaces Vi are invariant under T and where the linear transformation

induced by T on Vi has as matrix C (q(x)ei), the companion matrix of q(x)ei.

We assume that what we are really trying to prove is the following:

If V = U1 ⊕ U2 ⊕ · · · ⊕ Us where the Uj are invariant under T and where the linear

transformation induced by T on Uj has as matrix C
(
q(x)fj

)
, f1 ≥ f2 ≥ · · · ≥ fs, then

r = s and e1 = f1, e2 = f2, . . . , er = fr.

Suppose then that we do have the two decompositions described above, V = V1 ⊕

· · · ⊕ Vr and V = U1 ⊕ · · · ⊕ Us, and that some ei 6= fi.

Then there is a first integer m such that em 6= fm, while e1 = f1, . . . , em−1 = fm−1.

We may suppose that em > fm.

Now g(T )fm annihilates Um, Um+1, . . . , Us, whence

V q(T )fm = U1q(T )fm ⊕ · · · ⊕ Um−1q(T )fm

However, it can be shown that the dimension of Uiq(T )fm for i ≤ m is d (fi − fm)

dim
(
V q(T )fm

)
= d (f1 − fm) + · · ·+ d (fm−1 − fm)

On the other hand, V q(T )fm ⊃ V1q(T )fm ⊕ · · ·⊕ · · · ⊕Vmq(T )fm and since Viq(T )fm has

dimension d (ei − fm), for i ≤ m, we obtain that

dim
(
V q(T )fm

)
≥ d (ei − fm) + · · ·+ d (em − fm)

Since e1 = f1, . . . , em−1 = fm−1 and em > fm, this contradicts the equality proved

above. We have thus proved the theorem.
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Corollary 4.2.10. Suppose the two matrices A,B in Fn are similar in Kn where K is an

extension of F . Then A and B are already similar in Fn.

Proof. Suppose that A,B ∈ Fn are such that B = C−1AC with C ∈ Kn.

We consider Kn as acting on K(n), the vector space of n-tuples over K.

Thus F (n) is contained in K(n) and although it is a vector space over F it is not a vector

space over K.

The image of F (n), in K(n), under C need not fall back in F (n) but at any rate F (n)C is

a subset of K(n) which is a vector space over F .

Let V be the vector space F (n) over F,W the vector space F (n)C over F , and for

v ∈ V let vψ = vC.

Now A ∈ AF (V ) and B ∈ AF (W ) and for any v ∈ V, (vA)ψ = vAC = vCB = (vψ)B

whence the conditions of Theorem ?? are satisfied.

Thus A and B have the same elementary divisors; by Theorem 4.2.9, A and B must

be similar in Fn.

Here, we observe that the corollary does not state that if A,B ∈ Fn are such that

B = C−1AC with C ∈ Kn then C must of necessity be in Fn; this is false.

It merely states that if A,B ∈ Fn are such that B = C−1AC with C ∈ Kn then there

exists a (possibly different) D ∈ Fn such that B = D−1AD.

Let Us Sum Up

In this section, we studied the rational canonical form using companion matrix.

Check your Progress

1. What is the difference between the Jordan canonical form and the Rational

canonical form?

(a) Jordan form is for diagonalizable matrices; Rational form is for non-diagonalizable

matrices.

(b) Jordan form uses Jordan blocks; Rational form uses companion matrices.

(c) Jordan form is unique; Rational form is not.

(d) Rational form uses minimal polynomials.
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2. The Rational Canonical form consists of blocks that are

(a) companion matrices (b) diagonal matrices

(c) upper triangular matrices (d) identity matrices

Unit Summary

The decomposition of the vector space into Jordan canonical form and rational

canonical form has been examined in this unit.

Glossary

• AF (V ) − Set of all linear transformations on V over F .

• pT (x) − Characteristic polynomial of T

• K(n) − Vector space of n− tuples over K.

Self Assessment Questions

1. Prove that the matrix  1 1 1
−1 −1 −1
1 1 0


is nilpotent, and find its invariants and Jordan form.

2. Verify that V becomes an F [x]− module under the definition given.

Exercises

1. Find all possible Jordan forms for

(i) All 8× 8 matrices having x2(x− 1)3 as minimal polynomial.

(ii) All 10 × 10 matrices, over a field of characteristic different from 2, having

x2(x− 1)2(x+ 1)3 as minimal polynomial.

2. If F is the field of rational numbers, find all possible rational canonical forms

and elementary divisors for

(i) The 6× 6 matrices in F6 having (x− 1)(x2 + 1)2 as minimal polynomial.
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(ii) The 15 × 15 matrices in F15 having (x2 + x + 1)2(x3 + 2)2 as minimal poly-

nomial.

(iii) The 10× 10 matrices in F10 having (x2 + 1)2(x3 + 1) as minimal polynomial.

Answers for Check your Progress

Section 4.1 1. (b) 2. (b)

Section 4.2 1. (b ) 2. (a)
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Unit 5

Hermitian, unitary, normal transforma-
tions

Objectives

After reading this unit, learners will be able to

1. study the fundamental concepts of the trace and transpose of a matrix

2. understand the concepts of Hermitian, Unitary and Normal transformations

3. study the real quadratic forms.

5.1 Trace and Transpose

Definition 5.1.1. Let Fn be the set of all n × n matrices over a field F . The trace of

A ∈ Fn is the sum of the elements on the main diagonal of A.

We shall write the trace of A as trA, if A = (aij), then

trA =
n∑
i=1

aii

Lemma 5.1.2. For A,B ∈ Fn and λ ∈ F ,

1. tr(λA) = λ tr A.

2. tr(A+B) = trA+ trB.

3. tr(AB) = tr(BA).
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Proof. (i) Let A = [aij], B = [bij] ∈ Fn.

Then λA = [λaij] and so tr(λA) =
n∑
i=1

λaii = λ
n∑
i=1

aii = λtr(A).

(ii) tr(A+B) =
n∑
i=1

(aii + bii) =
n∑
i=1

aii +
n∑
i=1

bii = tr(A) + tr(B).

If A = (αij) and B = (βij), then AB = (γij) where

γij =
n∑
k=1

αikβkj

and BA = (µij) where

µij =
n∑
k=1

βikαkj.

Thus

tr(AB) =
∑
i

γii =
∑
i

(∑
k

αikβki

)
;

if we interchange the order of summation in this last sum, we get

tr(AB) =
n∑
k=1

n∑
i=1

αikβki =
∑
k=1

(∑
i=1

βkiαik

)
=

n∑
k=1

µkk = tr(BA).

Corollary 5.1.3. If A is invertible then tr(ACA−1) = tr(C).

Proof. Let B = CA−1. Then tr(ACA−1) = tr(AB) = tr(BA) = tr(CA−1A) = tr(C).

Definition 5.1.4. If T ∈ A(V ) then tr T , the trace of T , is the trace of m1(T ) where

m1(T ) is the matrix of T in some basis of V .

We claim that the definition is meaningful and depends only on T and not on any

particular basis of V . For if m1(T ) and m2(T ) are the matrices of T in two different

bases of V , then m1(T ) and m2(T ) are similar matrices, so they have the same trace.

Lemma 5.1.5. If T ∈ A(V ) then tr(T ) is the sum of the characteristic roots of T .

Proof. We can assume that T is a matrix in Fn.

If K is the splitting field for the minimal polynomial of T over F , then in Kn, T can be

brought to its Jordan form, J .
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From this, J is a matrix on whose diagonal appear the characteristic roots of T , each

root appearing as often as its multiplicity.

Thus tr(J) is the sum of the characteristic roots of T .

However, since J is of the form ATA−1, tr(J) = tr(T ).

Lemma 5.1.6. If F is a field of characteristic 0, and if T ∈ AF (V ) is such that tr(T i) = 0

for all i ≥ 1 then T is nilpotent.

Proof. Since T ∈ AF (V ), T satisfies some minimal polynomial p(x) = xm + α1x
m−1 +

· · ·+ αm from Tm + α1T
m−1 + · · ·+ αm−1T + αm = 0, taking traces of both sides yields

trTm + α1trT
m−1 + · · ·+ αm−1trT + trαm = 0.

However, by assumption, tr(T i) = 0 for i ≥ 1, thus we get αm = 0.

If dimV = n, tr(αmI) = nαm whence nαm = 0.

But the characteristic of F is 0, therefore, n 6= 0, hence it follows that αm = 0.

Since the constant term of the minimal polynomial of T is 0, T is singular and so 0 is

a characteristic root of T .

We can consider T as a matrix in Fn and therefore also as a matrix in Kn, where K

is an extension of F which in turn contains all the characteristic roots of T .

In Kn, we can bring T to triangular form, and since 0 is a characteristic root of T , we

can actually bring it to the form.
0 0 · · · 0

β2 α2 0. 0
... . . . ...
βn

∗ αn

 =

(
0 0

∗ Tn

)
,

where,

T2 =

α2 0 0
. . . ...
∗ αn


is an (n− 1)× (n− 1) matrix (the ∗’s indicate parts in which we are not interested

in the explicit entries).
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Now

T k =

(
0 0

∗ T k2

)
hence 0 = tr(T k) = tr(T k2 .

Thus T2 is an (n− 1)× (n− 1) matrix with the property that tr(T k2 ) = 0 for all k ≥ 1.

Either using induction on n,or repeating the argument on T2 used for T , we get, since

α2, . . . αn are the characteristic roots of T2, that α2 = · · · = αn = 0.

Thus when T is brought to triangular form, all its entries on the main diagonal are 0

and hence T is nilpotent.

Lemma 5.1.7. If F is of characteristic 0 and if S and T , in AF (V ), are such that ST−TS

commutes with S, then ST − TS is nilpotent.

Proof. For any k ≥ 1, we compute (ST − TS)k.

Now (ST − TS)k = (ST − TS)−1(ST − TS) = (ST − TS)k−1ST − (ST − TS)k−1TS.

Since ST −TS commutes with S, the term (ST −TS)k−1ST can be written in the form

S((ST − TS)k−1T ).

If we let B = (ST − TS)−1T , we see that (ST − TS)k = SB − BS; hence tr((ST −

TS)k) = tr(SB −BS) = tr(SB)− tr(BS) = 0.

By previous lemma, ST − TS must be nilpotent.

Definition 5.1.8. If A = [αij] ∈ Fn, then the transpose of A, written as A′, is the matrix

A′ = [γij] where γji = αji for each i and j.

Lemma 5.1.9. For A,B ∈ Fn

1. (A′)′ = A.

2. (A+B)′ = A′ +B′.

3. (AB)′ = B′A′.

Proof. Let A = [aij], B = [bij] ∈ Fn.

(i) Let A′ = [cij]. Then cij = aji. In (A′)′ = [dij], dij = cji = aij and hence (A′)′ = A.

(ii) Clearly A + B = [aij + bij]. Also (A + B)′ = [aij + bij]
′ = [xij]. From this

xij = aji + bji and so (A+B)′ = A′ +B′.
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Suppose that A = [αij] and B = [βij]. Then AB = [λij] where

λij =
n∑
k=1

αikβkj.

Therefore, by definition, (AB)′ = [µij], where

µij = λji =
n∑
k=1

αjkβki

On the other hand A′ = [γij] where γij = αji and B′ = [ξij] where ξij = βji, whence the

(i, j) element of B′A′ is

n∑
k=1

ξikγkj =
n∑
k=1

βkiαjk =
n∑
k=1

αjkβki = µij

That is, (AB)′ = B′A′.

Definition 5.1.10. The matrix A is said to be a symmetric matrix if A′ = A.

Definition 5.1.11. The matrix A is said to be a skew-symmetric matrix if A′ = −A.

Definition 5.1.12. A mapping ∗ from Fn into Fn is called an adjoint on Fn if

1. (A∗)∗ = A.

2. (A+B)∗ = A∗ +B∗.

3. (AB)∗ = B∗A∗.

for all A,B ∈ Fn.

Let Us Sum Up

In this section, we studied

1. trace of a matrix

2. transpose of a matrix

3. symmetric, skew symmetric and adjoint of a matrix.
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Check Your Progress

1. Which of the following properties of the trace is true?

(a) tr(A+B) = tr(A) + tr(B)

(b) tr(kA) = ktr(A)

(c) tr(AB) = tr(BA)

(d) All the above.

2. If A is a symmetric matrix, which of the following is true?

(a) A = AT (b) A = −AT

(c) AT 6= A (d) None of the above.

3. What is the trace of a matrix?

(a) The product of the diagonal elements of the matrix

(b) The sum of the diagonal elements of the matrix

(c) The sum of all elements of the matrix

(d) The determinant of the matrix

5.2 Hermitian, Unitary and Normal Transformations

Result 5.2.1. A polynomial with coefficients which are complex numbers has all its roots

in the complex field.

Result 5.2.2. Thhe only irreducibe, nonconstant, polynomials over the field of real num-

bers are either of degree 1 or of degree 2.

Lemma 5.2.3. If T ∈ A(V ) is such that (vT, v) = 0 for all v ∈ V , then T = 0.

Proof. Since (vT, v) = 0 for v ∈ V , given u,w ∈ V , ((u + w)T, u + w) = 0. Expanding

this out and making use of (uT, u) = (wT,w) = 0, we obtain

(uT,w) + (wT, u) = 0 for all u,w ∈ V (5.1)

Since equation (6.1) holds for arbitrary w in V , it still must hold if we replace in it

w by iw where i2 = −1; but (uT, iw) = −i(uT,w) whereas ((iw)T, u) = i(wT, u).

Substituting these values in (6.1) and cancelling out i leads us to

− (uT,w) + (wT, u) = 0. (5.2)

108



Adding (6.1) and (6.2) we get (wT, u) = 0 for all u,w ∈ V , whence, in particular,

(wT,wT ) = 0. By the defining properties of an inner-product space, this forces wT = 0

for all w ∈ V , hence T = 0.

Definition 5.2.4. The linear transformation T ∈ A(V ) is said to be unitary if (uT, vT ) =

(u, v) for all u, v ∈ V .

Lemma 5.2.5. If (vT, vT ) = (v, v) for all v ∈ V then T is unitary.

Proof. Let u, v ∈ V .

Then by assumption ((u+ v)T, (u+ v)T ) = (u+ v, u+ v).

Expanding this out and simplifying, we obtain

(uT, vT ) + (vT, uT ) = (u, v) + (v, u) (5.3)

for u, v ∈ V . In (6.3) replace v by iv; computing the necessary parts, this yields

− (uT, vT ) + (vT, uT ) = −(u, v) + (v, u). (5.4)

Adding (6.3) and (6.4) results in (uT, vT ) = (u, v) for all u, v ∈ V , hence T is unitary.

Theorem 5.2.6. The linear transformation T on V is unitary if and only if it takes an

orthonormal basis of V into an orthonormal basis of V .

Proof. Suppose that {v1, . . . , vn} is an orthonormal basis of V .

Then (vi, vj) = 0 for i 6= j while (vi, vi) = 1.

We wish to show that if T is unitary, then {v1T, . . . , vnT} is also an orthonormal basis

of V .

But (viT, vjT ) = (vi, vj) = 0 for i 6= j and (viT, viT ) = (vi, vi) = 1, thus indeed

{v1T, . . . , vnT} is an orthonormal basis of V .

On the other hand, if T ∈ A(V ) is such that both {v1, . . . , vn} and {v1T, . . . , vnT}

are orthonormal bases of V , if u,w ∈ V then

u =
n∑
i=1

αivi, w =
n∑
i=1

βivi.

whence by the orthonormality of the vi’s,

(u,w) =
n∑
i=1

αiβi.
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However,

uT =
n∑
i=1

αiviT and wT =
n∑
i=1

βiviT

whence by the orthonormality of the viT ’s,

(uT,wT ) =
n∑
i=1

αiβi = (u,w).

Hence T is unitary.

Lemma 5.2.7. If T ∈ A(V ) then given any v ∈ V there exists an element w ∈ V ,

depending on v and T , such that (uT, v) = (u,w) for all u ∈ V . This element w is

uniquely determined by v and T .

Proof. To prove the lemma, it is sufficient to exhibit a w ∈ V which works for all the

elements of a basis of V .

Let {u1, . . . , un} be an orthonormal basis of V ; we define

w =
n∑
i=1

(uiT, v)ui.

An easy computation shows that (ui, w) = (uiT, v), hence the element w has the de-

sired property.

That w is unique can be seen as follows: Suppose that (uT, v) = (u,w1) = (u,w2); then

(u,w1 − w2) = 0 for all u ∈ V which forces, on putting u = w1 − w2, w1 = w2.

Definition 5.2.8. If T ∈ A(V ) then the Hermitian adjoint of T , written as T ∗, is defined

by (uT, v) = (u, vT ∗) for all u, v ∈ V .

Lemma 5.2.9. If T ∈ A(V ) then T ∗ ∈ A(V ). Moreover,

1. (T ∗)∗ = T ;

2. (S + T )∗ = S∗ + T ∗;

3. (λS)∗ = λS∗;

4. (ST )∗ = T ∗S∗;

for all S, T ∈ A(v) and all λ ∈ F .
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Proof. We must first prove that T ∗ is a linear transformation on V .

If u, v, w are in V , then (u, (v + w)T ∗) = (uT, v + w) = (uT, v) + (uT,w) = (u, vT ∗) +

(u,wT ∗) = (u, vT ∗ + wT ∗), in consequence of which (v + w)T ∗ = vT ∗ + wT ∗.

Similarly, for λ ∈ F, (u, (λv)T ∗) = (uT, λv) = λ(uT, v) = λ(u, vT ∗) = (u, λ(vT ∗)),

whence (λv)T ∗ = λ(vT ∗).

Hence T ∗ is a linear transformation on V .

To see that (T ∗)∗ = T notice that (u, v(T ∗)∗) = (uT ∗, v) = (v, uT ∗) = (vT, u) = (u, vT )

for all u, v ∈ V whence v(T ∗)∗ = vT which implies that (T ∗)∗ = T .

We leave the proofs of (S + T )∗ = S∗ + T ∗ and of (λT )∗ = λT to the reader.

Finally, (u, v(ST )∗) = (uST, v) = (uS, V T ∗) = (u, vT ∗S∗) for all u, v ∈ V ; this forces

v(ST )∗ = vT ∗S∗ for every v ∈ V which results in (ST )∗ = T ∗S∗.

Lemma 5.2.10. T ∈ A(V ) is unitary if and only if TT ∗ = 1.

Proof. If T is unitary, then for all u, v ∈ V , (u, vTT ∗) = (uT, vT ) = (u, v) hence TT ∗ =

1.

On the other hand, if TT ∗ = 1, then (u, v) = (u, vTT ∗) = (uT, vT ), which implies that

T is unitary.

Note that a unitary transformation is non singular and its inverse is just its Hermi-

tian adjoint. Note, too, that from TT ∗ = 1 we must have that T ∗T = 1.

Theorem 5.2.11. If {v1, . . . , vn} is an orthonormal basis of V and if the matrix of T ∈

A(V ) in this basis is (αij) then the matrix of T ∗ in this basis is (βij), where βij = ᾱji

Proof. Since the matrices of T and T ∗ in this basis are, respectively, (αij) and (βij),

then

viT =
n∑
i=1

αijvj and viT ∗ =
n∑
i=1

βijvj.

Now

βij = (viT
∗, vj) = (vi, vjT ) = (vi,

n∑
i=1

αjkvk) = αji

by the orthonormality of the vi’s.

This proves the theorem.
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Definition 5.2.12. T ∈ A(V ) is called self-adjoint or Hermitian if T ∗ = T .

If T ∗ = −T we call skew-Hermitian. Given any S ∈ A(V ),

S =
S + S∗

2
+ i(

S − S∗

2i
)

and since S+S∗

2
and S−S∗

2i
are Hermitian, S = A+ iB where both A and B are Hermitian.

Theorem 5.2.13. If T ∈ A(V ) is Hermitian, then all its characteristic roots are real.

Proof. Let λ be a characteristic root of T .

Then there is a 6= 0 in V such that vT = λv.

Now λ(v, v) = (λv, v) = (vT, v) = (v, vT ∗) = (v, vT ) = (v, λv) = λ(v, v); since (v, v) 6=

0 we are left with λ = λ, hence λ is real.

Lemma 5.2.14. If S ∈ A(V ) and if vSS∗ = 0, then vS = 0.

Proof. Consider (uSS∗, v); since USS∗ = 0, 0 = (vSS∗, v) = (vS, v(S∗)∗) = (vS, vS). In

an inner-product space, this implies that vS = 0.

Corollary 5.2.15. If T is Hermitian and vT k = 0 for k > 1 then vT = 0.

Proof. We show that if vT 2m = 0 then vT = 0; for if S = T 2m−1, then S∗ = S and

SS∗ = T 2m , whence (vSS∗, v) = 0 implies that 0 = vS = vT 2m−1.

Continuing down in this way, we obtain T = 0.

If vT k = 0, then vT 2m = 0 for 2m > k, hence vT = 0.

Definition 5.2.16. T ∈ A(V ) is said to be normal if TT ∗ = T ∗T .

Lemma 5.2.17. If N is a normal linear transformation and if vN = 0 for v ∈ V , then

vN∗ = 0.

Proof. Consider (vN∗, N∗); by definition, (vN∗, vN∗) = (vN∗N, v) = (vNN∗, v), since

NN∗ = N∗N .

However, vN = 0, whence, certainly, vNN∗ = 0.

In this way we obtain that (vN∗, vN∗) = 0, forcing vN∗ = 0.

Corollary 5.2.18. If λ is a characteristic root of the normal transformation N and if

vN = λv then vN∗ = λ̄v.
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Proof. SinceN is normal, NN∗ = N∗N , therefore, (N−λ)(N−λ)∗ = (N−λ)(N∗−λ) =

NN∗ − λN∗ − λN + λ = N∗N − λN∗ − λN + λλ = (N∗ − λ)(N∗ − λ)(N − λ) =

(N − λ)∗(N − λ), that is to say n− λ is normal.

Since v(N − λ) = 0 by the normality of N − λ, from the lemma, v(N − λ)∗ = 0, hence

vN∗ = λ̄v.

Corollary 5.2.19. If T is unitary and if λ is a characteristic root of T , then |λ| = 1.

Proof. Since T is unitary it is normal.

Let λ be a characteristic root of T and suppose that vT = λv with v 6= in V .

By above Corollary, vT ∗ = λv, thus v = vTT ∗ = λT ∗ = λλv since TT ∗ = 1.

Thus we get λλ = 1, which, of course, says that |λ| = 1.

Lemma 5.2.20. If N is normal and if vNk = 0, then vN = 0.

Proof. Let S = NN∗; S is Hermitian, and by the normality of N, vSk = v(NN∗)k =

vNk(N∗)k = 0.

By the corollary to Lemma 6.10.6, we deduce that vS = 0, that is to say, vNN∗ = 0.

From this, we get vN = 0.

Corollary 5.2.21. If N is normal and if for λ ∈ F, v(N − λ)k = 0, then vN = λv.

Proof. From the normality of N it follows that N is normal, whence by applying the

lemma just proved to N − λ we obtain the corollary.

Lemma 5.2.22. Let N be a normal transformation and suppose that λ and µ are two

distinct characteristic roots of N . If v, w are in V and are such that vN = λv, wN = µw,

then (v, w) = 0.

Proof. We compute (vN,w) in two different ways.

As a consequence of vN = λv, (vN,w) = (λv, w) = λ(v, w).

From wN = µw, using above Lemma, we obtain that wN∗ = µw, whence (vN,w) =

(v, wN∗) = (v, µw) = µ(v, w).

Comparing the two computations gives us λ(v, w) = µ(v, w) and since λ 6= µ, this

results in (v, w) = 0.
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Theorem 5.2.23. If N is a normal linear transformation on V , then there exists an

orthonormal basis, consisting of characteristic vectors of N , in which the matrix of N is

diagonal. Equivalently, if N is a normal matrix there exists a unitary matrix U such that

UNU−1(= UNU∗) is diagonal.

Proof. Let N be normal and let λ1, . . . , λn be the distinct characteristic roots of N .

By the above corollary, we can decompose V = V1 ⊕ · ⊕ Vk where every vi ∈ Vi, is

annihilated by (N − λi)ni.

From this, we get, Vi consists only of characteristic vectors of N belonging to the

characteristic root λi.

The inner product of V induces an inner product on Vi and hence we can find a basis

of Vi orthonormal relative to this inner product.

By above Lemma, elements lying in distinct Vi’s are orthogonal.

Thus putting together the orthonormal bases of the Vi’s provides us with an orthonor-

mal basis of V . This basis consists of characteristic vectors of N , hence in this basis

the matrix of N is diagonal.

1. A change of basis from one orthonormal basis to another is accomplished by a

unitary transformation.

2. In a change of basis the matrix of a linear transformation is changed by conju-

gating by the matrix of the change of basis.

Corollary 5.2.24. If T is a unitary transformation, then there is an orthonormal basis

in which the matrix of T is diagonal; equivalently, if T is a unitary matrix, then there is

a unitary matrix U such that UTU−1(= UTU∗) is diagonal.

Corollary 5.2.25. If T is a Hermitian linear transformation, then there exists an or-

thonormal basis in which the matrix of T is diagonal. equivalently, if T is a Hermitian

matrix, then there exists a unitary matrix U such that UTU−1(= UTU∗) is diagonal.

Lemma 5.2.26. The normal transformation N is

1. Hermitian if and only if its characteristic roots are real.

2. Unitary if and only if its characteristic roots are all of absolute value 1.
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Proof. We argue using matrices.

If N is Hermitian, then it is normal and all its characteristic roots are real.

If N is normal and has only real characteristic roots, then for some unitary matrix U ,

UNU−1 UNU∗ = D, where D is a diagonal matrix with real entries on the diagonal.

Thus D∗ = D; since D∗ = (UNU∗)∗ = UN∗U∗, the relation D∗ D implies UN∗U∗ =

UNU∗, and since U is invertible we obtain N∗ N .

Thus N is Hermitian.

If A is any linear transformation on V , then tr (AA∗) can be computed by using the

matrix representation of A in any basis of V .

We pick an orthonormal basis of V ; in this basis, if the matrix of A is [αij] then that of

A∗ is (βij) where βij = αji.

A simple computation then shows that tr (AA∗) =
∑

i,j |αij|2 and this is 0 if and only

if each αij = 0, that is, if and only if A = 0.

In a word, tr (AA∗) = 0 if and only if A = 0.

Lemma 5.2.27. If N is normal and AN = NA, then AN∗ = N∗A.

Proof. We want to show that X = AN∗ − N∗A is 0; what we shall do is prove that

tr XX∗ = 0, and deduce from this that X = 0. Since N commutes with A and with

N∗, it must commute with AN∗ − N∗A, thus XX∗ = (AN∗ − N∗A)(NA∗ − A∗N) =

(AN∗−N∗A)NA∗− (AN∗−N∗A)A∗N = N{(AN∗−N∗A)A∗}−{(AN∗−N∗A)A∗}N .

Being of the form NB−BN , the trace of XX∗ is 0. Thus X = 0, and AN∗ = N∗A.

Lemma 5.2.28. The Hermitian linear transformation T is nonnegative. (positive) if and

only if all of its characteristic roots are nonnegative (positive).

Proof. Suppose that T ≥ 0; if λ is a characteristic root of T , then vT = λv for some

v 6= 0.

Thus 0 ≤ (vT, v) = (λv, v) = λ(v, v); since (v, v) > 0 we deduce that λ ≥ 0.

Conversely, if T is Hermitian with nonnegative characteristic roots, then we can

find an orthonormal basis {v1, . . . , vn} consisting of characteristic vectors of T .

For each vi, viT = λivi, where λi ≥ 0.

Given v ∈ V, v =
∑
αivi hence vT =

∑
αiviT =

∑
λiαivi.

But (vT, v) = (
∑
λivi,

∑
αivi) =

∑
λiαiαi by the orthonormality of vi’s.
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Since λi ≥ 0 and αiαi ≥ 0.

We get (vT, v) ≥ 0 hence T ≥ 0.

Lemma 5.2.29. T ≥ 0 if and only if T = AA∗ for some A.

Proof. We first show that AA∗ ≥ 0, Given v ∈ V, (vAA∗, V ) = (vA, vA) ≥ 0, hence

AA∗ ≥ 0.

On the other hand, if T ≥ 0 we can find a unitary matrix U such that

UTU∗ =

λ1 . . .
λn


where each λi is a characteristic root of T , hence each λi ≥ 0. Let

S =


√
λ1

. . . √
λn


since each λi ≥ 0, each

√
λi is real, whence S is Hermitian.

Therefore, U∗SU is Hermitian, but

(U∗SU)2 = U∗S2U = U∗


√
λ1

. . . √
λn

U = T

We have represented T in the form AA∗, where A = U∗SU.

Notice that we have actually proved a little more; namely, if in constructing S above,

we had chosen the nonnegative λi for each λi, then S, and U∗SU , would have been

nonnegative.

Thus T ≥ 0 is the square of a non- negative linear transformation; that is, every T ≥ 0

has a nonnegative square root.

This nonnegative square root can be shown to be unique.

Let Us Sum Up

In this section, we studied the

1. Hermitian linear transformations and its properties

2. Unitary linear transformations and its properties

3. Normal linear transformations and its properties.
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Check your Progress

1. Which of the following is true for the eigenvalues of a Hermitian matrix?

(a) The eigenvalues are purely real

(b) The eigenvalues are purely imaginary

(c) The eigenvalues are purely complex

(d) The eigenvalues are zero.

2. Which of the following statements is true for a normal matrix?

(a) Every diagonal matrix is normal

(b) Every Hermitian matrix is normal

(c) Every unitary matrix is normal

(d) All of the above.

3. The determinant of a unitary matrix is

(a) 0 (b)1 (c) a real number (d) a complex number with modulus 1

5.3 Real Quadratic Forms

Definition 5.3.1. Let V be a real inner product space and suppose that A is a real

symmetric linear transformations on V . The real-valued function Q(v) defined on V by

Q(v) = (vA, v) is called the quadratic form associated with A.

Observations:

Consider a real n× n symmetric matrix A = (αij) acting on F (n) and that the inner

product for (δ1, δ2, ..., δn) and (γ1, γ2, ..., γn) in F (n) is the real number δ1γ1 + δ2γ2 + ...+

δnγn.

For an arbitrary vector v = (x1, x2, ..., xn) in F (n),

Q(v) = (vA, v)

= α11x
2
1 + α22x

2
2 + ...+ αnnx

2
n + 2

∑
i<j

αijxixj.

For example,

The quadratic form αx2 + βxy + γy2 is associated with the symmetric matrix(
α β/2
β/2 γ.

)
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Definition 5.3.2. Two real symmetric matrices A and B are congruent if there is a non-

singular real matrix T such that B = TAT
′.

Lemma 5.3.3. Congruence is an equivalence relation.

Proof. Let us write, when A is congruent to B, A ∼= B.

1. A ∼= A for A = |A|′.

2. If A ∼= B then B = TAT
′ where T is nonsingular, hence A = SBS

′ where

S = T−1. Thus B ∼= A.

3. If A ∼= B and B ∼= C then B = TAT
′ while C = RBR

′, hence C = RTAT
′
R
′

=

(RT )A(RT )
′, and so A ∼= C.

Since the relation satisfies the defining conditions for an equivalence relation, the

lemma is proved.

Theorem 5.3.4. Given the real symmetric matrix A there is an invertible matrix T such

that

TAT ′ =

Ir −Is
0t


where Ir and Is are respectively the r× r and s× s unit matrices and where 0, is the t× t

zero-matrix. The integers r + s, which is the rank of A, and r − s, which is the signature

of A, characterize the congruence class of A. That is, two real symmetric matrices are

congruent if and only if they have the same rank and signature.

Proof. Since A is real symmetric its characteristic roots are all real; let λ1, · · · , λr be its

positive characteristic roots, −λr+1, · · · ,−λr+s its negative.

We can find a real orthogonal matrix C such that

CAC−1 = CAC
′
=



λ1
. . .

λr
1√
−λr+1

. . .
1√
−λr+s

0t
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where t = n− r − s. Let D be the real diagonal matrix shown above.

D =



1√
λ1

. . .
1√
λr

1√
−λr+1

. . .
1√
−λr+s

It


A single composition shows that

DCAC ′D
′
=

Ir −Is
0t


Thus there is a matrix of the required form in the congruence class of A.

Our task is now to show that this is the only matrix in the congruence class of A of this

form, or, equivalently, that

L =

Ir −Is
0t

 and M =

Ir′ −Is′
0t′


are congruent only if r = r′, s = s

′ and t = t
′.

Suppose that M = TLT
′ where T is invertible and so the rank of M equals that of L;

since the rank of M is n− t′ while that of L is n− t we get t = t
′.

Suppose that r < r
′; since n = r + s + t = r

′
+ s

′
+ t

′, and since t = t′, we must have

s > s
′.

Let U be the subspace of F (n) of all vectors having the first r and last t coordinates 0;

U is s-dimensional and for u 6= 0 in U , (uL, u) < 0.

Let W be the subspace of F (n) for which the r′ + 1, · · · , r′ + s′ components are all

0; on W, (wM,w) ≥ 0 for any w ∈ W .

Since T is invertible, and since W is (n− s′)-dimensional, WT is (n− s′)-dimensional.

For w ∈ W , (wM,w) ≥ 0; hence (wTLT ′, w) ≥ 0; that is, (wTL,wT ) ≥ 0.

Therefore, on WT, (wTL,wT ) ≥ 0 for all elements.

Now dim(WT ) + dimU = (n− s′) + r = n+ s− s′ > n and so WT ∩ U 6= 0.

This, however, is nonsense, for if x 6= 0 ∈ WT∩U , on one hand, being in U , (xL, x) < 0,
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while on the other, being in WT , (xL, x) ≥ 0.

Thus r = r′ and so s = s′.

The rank, r + s, and signature, rs, of course, determine r, s and so t = (n − r − s),

whence they determine the congruence class.

Let Us Sum Up

In this section, we studied the

1. quadratic form associated with the matrix

2. congruence relation of a matrices

3. rank, signature of the matrix.

Check Your Progress

1. Which of the following matrices represents the quadratic form 3x2 + 2xy + 4y2?

(a)
(

3 2
2 4.

)
(b)

(
3 4
4 2.

)

(c)
(

3 1
1 4

)
(d)

(
3 1/2

1/2 4

)
2. The quadratic form ax2 + 2bxy+ cy2 can be represented in matrix form as xTAX

where

(a) A is a diagonal matrix

(b) A is a symmetric matrix

(c) A is an identity matrix

(d) None of the above.

Unit Summary

The basic ideas of matrix transpose and trace have been covered in this unit. In ad-

dition, we explored the definitions andsignificance of unitary, normal, and Hermitian

lineartransformations. Furthermore, we discussed about the matrix’s real quadratic

form.
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Glossary

• Fn − Set of all n× n matrices over a field F

• tr(A) − Trace of A

• T∗ − Hermitian Adjoint of T

Self Assessment Questions

1. Show that A and its transpose A′ are similar.

2. Prove that A is normal if and only if A commutes with AA∗.

3. Determine the rank and signature of the following real quadratic forms:

(a) x21 + 2x1x2 + x22

(b) x21 + x1x2 + 2x1x3 + 2x22 + 4x2x3 + 2x23.

Exercises

1. If A is skew- symmetric, prove that the elements on its main diagonal are all 0.

2. Prove that a linear transformation T on V is Hermitian if and only if (vT, v) is

real for all v ∈ V .

3. Prove that any complex matrix can be brought to triangular form by a unitary

matrix.

4. How many congruence classes are there for n× n real symmetric matrices.

Answers for Check your Progress

Section 5.1 1. (d) 2. (a) 3. (b)

Section 5.2 1. (a) 2. (d) 3. (d)

Section 5.3 1. (c) 2. (b)
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